Search published articles


Showing 89 results for Composite

Ahabboud Malika, Gouitaa Najwa, Ahjyaje Fatimazahra, Lamcharfi Taj-Dine, Abdi Farid, Haddad Mustapha,
Volume 21, Issue 4 (12-2024)
Abstract

This paper reports the preparation and characterization of (1-x) PbZr0.52Ti0.48O3 -xBiFeO3 (1-x)PZTxBFO) (x= 0.00, 0.15, 0.30, 0.45, 0.60 and 1.00) multiferroic ceramics which were prepared by a sol-gel method for PZT and hydrothermal reaction process for BFO. The perovskite structure of the composite system was confirmed by X-ray diffraction and Raman spectroscopy, while the composite microstructure w:as char:acterized by scanning electron microscopy. XRD results and Rietveld analysis for the (1-x)PZT-xBFO composites confirm the coexistence of these three phases; rhombohedral (R3m) and tetragonal phases (P4mm) for pure PZT and only the rhombohedral phase (R3c) for pure BFO. Raman spectroscopy of the (1-x)PZT-xBFO composites shows two clear bands around 150 and 180 cm-1. When the BFO content increases, the intensities of Raman modes are decreased. The SEM results suggested a formation of agglomerate and form into large complex clusters as BFO increased and a higher grain size was obtained for the BFO sample compared with the other composites. The EDS spectra of our pellets show that all the characteristic lines of the chemical elements Pb, Zr, Ti, and O and Bi, Fe, and O are present for the PZT and BFO materials respectively. The temperature-dependent dielectric constant shows different behavior dependent on BFO content. Indeed, the dielectric properties are found to be improved with an increase in dopant concentration of BFO in PZT, and novel dielectric behavior, resonance, and antiresonance, were obtained.

Ferda Mindivan,
Volume 21, Issue 4 (12-2024)
Abstract

Natural-reinforced hybrid composites, called "eco-materials," are becoming increasingly important for protecting the environment and eliminating waste problems. In this study, hybrid biocomposites were produced by the colloidal mixing method using seashell (SS) as natural waste, two graphene derivatives (graphene oxide (GO) and reduced graphene oxide (RGO)) as filler material, and polyvinyl chloride (PVC) as the polymer matrix. The crystallization and mechanical properties of hybrid biocomposites were examined based on their thermal properties using TGA and DSC analysis. In comparison to PVC/GO and PVC/RGO composites with identical weight percentages of GO and RGO, the PVC/GO composite exhibited superior thermal stability and crystallinity, resulting in elevated hardness values for the same composite. These results were attributed to the better interaction of GO with PVC due to the higher number of oxygen-containing functional groups in GO than in RGO. However, the PVC/RGO/SS hybrid biocomposites exhibited superior properties than PVC/GO/SS hybrid biocomposites. The greatest crystallinity values were 39.40% for PVC/RGO/SS-20 compared to PVC/RGO at 20 wt% SS content and 29.21% for PVC/GO/SS-20 compared to PVC/GO. The PVC/RGO/SS-20 hybrid biocomposite showed the greatest gain in hardness value, up 18.47% compared to the PVC/RGO composite. No significant change was observed in the melting and weight loss temperatures as the SS content increased; however, the crystallinity and glass transition temperatures in hybrid biocomposites increased as the SS content increased. All analysis results demonstrated the achievement of SS-graphene-PVC interactions, suggesting that SS waste could enhance the thermal and mechanical properties of composite production.
Maryam Hajiebrahimi, Sanaz Alamdari, Omid Mirzaee,
Volume 21, Issue 4 (12-2024)
Abstract

Dual nanocomposites based on metal sulfide nanomaterials with a narrow band gap are favorable candidates for future optoelectronic applications and ionizing ray sensors. In this study, novel silver-doped zinc sulfide/ cadmium sulfide (ZnS/CdS: Ag) nanocomposites were synthesized using the cost-effective solvothermal approach. For the first time, the radiation sensitivity of the newly developed nanocomposite was assessed using a 241Am alpha source and ion beam-induced luminescence (IBIL) measurements. The ZnS/CdS: Ag nanocomposite demonstrated significant light emission in the blue-green spectrum when measured at room temperature. When exposed to alpha irradiation, the ZnS/CdS: Ag nanocomposite film displayed exceptional sensitivity compared to pure ZnS or CdS films. The FESEM images revealed a uniform distribution of semi-spherical and rod-shaped nanoparticles, with an average particle size measuring 180 nm. The results from XRD and EDX demonstrated distinct peaks corresponding to ZnS, CdS, and associated elements within the nanocomposite. The existence of several groups within the nanocomposite was confirmed through Fourier transform infrared spectroscopy. Evaluations revealed that the optical quality of the ZnS/CdS: Ag nanocomposite showed enhancement in comparison to pure ZnS and CdS. The results suggest that the ZnS/CdS: Ag nanocomposite film holds great promise for applications in optoelectronic devices and detection technologies.
 
Adil Kadum Shakir, Ebrahim Ghanbari-Adivi, Aref S. Baron Baron, Morteza Soltani,
Volume 22, Issue 1 (3-2025)
Abstract

Nanomaterials have significantly transformed multiple scientific and technological fields due to their exceptional properties, which result from their quantum confinement effects and high surface-to-volume ratios. Among these materials, zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles have attracted considerable interest because of their diverse applications.
In this study, TiO2-ZnO nanocomposites were synthesized using varying calcination times of 1, 1.5, 2, 2.5, and 3 hours. Characterization of fabricated samples through X-ray diffraction (XRD)‌ spectroscopy, Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), and energy-dispersive X-ray spectroscopy (EDXS) confirmed the successful fabrication of the nanocomposites. In this regard, XRD analysis revealed anatase TiO2 and hexagonal wurtzite ZnO phases. Raman spectroscopy also supported these findings, identifying characteristic peaks of both TiO2 and ZnO.
The calcination time had a minimal effect on the crystal structures and also morphology of the nanocomposites, which gave rise to its negligible impact on optical properties and biological activities of the samples. Optical properties assessed by means of UV-visible and photoluminescence (PL) spectroscopy showed consistent band gap absorption and emission profiles across all samples, among which the nanocomposite calcined for 1 hour exhibited the best optical properties.

The sample prepared at 1 hour not only showed the most favorable optical properties, but also demonstrated significant antibacterial, antifungal, and cytotoxic activities, which make it suitable for various applications. In this regard, a reduction of more than 99.9% occurred in the number of Escherichia coli and Staphylococcus aureus bacteria and also Candida albicans fungus by using TiO2-ZnO nanocomposite. Besides, addition of 500 µg/ml of nanocomposite decreased the cell viability to 34.47%, which signifies its high cytotoxicity activity.

 
Zeinab Abbasali Karajabad, Adrine Malek Khachatourian, Mohammad Golmohammad, Ali Nemati,
Volume 22, Issue 1 (3-2025)
Abstract

Hybrid asymmetric supercapacitors using distinct cathode/anode materials offer enhanced energy density by expanding operational potential windows compared to symmetric configurations. In this work rGO/α-Fe₂O₃ and rGO/TiO₂ nanocomposites were synthesized via hydrothermal method for hybrid asymmetric supercapacitors applications. Field emission scanning electron microscope (FESEM) revealed uniform distribution of spherical α-Fe₂O₃ and TiO₂ nanoparticles on rGO sheets. The X-ray diffractometry (XRD) analysis confirmed the presence of the hematite and anatase in the rGO/α-Fe2O3 and rGO/TiO2 nanocomposites, respectively. Additionally, in the XRD spectra of both nanocomposites, a broad peak corresponding to the (002) crystalline planes of rGO was observed. Electrochemical testing showed specific capacities of 130 F/g (rGO/α-Fe₂O₃) and 253 F/g (rGO/TiO₂) at 5 mV/s in 1M KOH. The assembled hybrid asymmetric supercapacitors (rGO/α-Fe₂O₃//rGO/TiO₂) achieved a 1.6 V operational potential window. Power density and energy density of 1066 W kg-1 and 9.7 Wh kg-1 were achieved at a current density of 1 A/g, respectively.
 
Mohammad Derakhshani, Saeed Rastegari, Ali Ghaffarinejad,
Volume 22, Issue 1 (3-2025)
Abstract

In this research, the morphology of the Ni-W coating was modified by adding graphene oxide (GO) nanosheets in such a way that a foam-like structure with high porosity and holes in the form of intertwined tunnels was obtained. Different amounts of GO nanosheets were added to the plating bath and the resulting coating was examined. In order to estimate the electrochemically active surface area, the cyclic voltammetry (CV) test was used. Moreover, the linear polarization test (LSV) and chronoamperometry in 1 M NaOH were conducted to investigate the electrocatalytic activity for the hydrogen evolution reaction (HER). It was found that by adding 0.4 g/L GO to the electroplating bath, the electrocatalytic properties are doubled and the active surface of the electrode is significantly increased.
 
Ali Keramatian, Mohammad Hossein Enayati, Fatemehsadat Sayyedan, Sima Torkian,
Volume 22, Issue 2 (6-2025)
Abstract

The aim of this study was to investigate the effect of current density on the microstructure of electrodeposited Ni–WC–TiC composite coatings on 304 stainless steel and compare the corrosion resistance of the coating and substrate in a 3.5 wt.% sodium chloride solution. A Watts nickel bath was employed under direct current (DC) conditions. Microstructure, elemental composition, and phase composition analyses were conducted using scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results revealed that the coating formed at a current density of 40 mA/cm² exhibited a denser microstructure with higher cohesion and uniformity compared to coatings produced at other current densities. The corrosion resistance of the coating and substrate was evaluated using Tafel and electrochemical impedance spectroscopy (EIS) analyses. The corrosion test results indicated that the substrate exhibited superior corrosion resistance compared to the coating. Based on the dynamic polarization test plots, the corrosion mechanism of the substrate is active-quasi passive, with a pseudo-passive layer forming on the sample which remains stable within the potential range of -0.17 to 0.17 V. Beyond this potential range, the sample becomes susceptible to pitting. In the coated sample, the corrosion behavior is similar to that of the substrate, with the exception that the pseudo-passive layer remains stable within a narrower potential range of -0.19 to 0.08 V.
Nur Aziah Suhada Naim, Muhammad Faiq Abdullah, Sung Ting Sam, Wan Ahmad Radi Wan Ahmad Yaakub,
Volume 22, Issue 2 (6-2025)
Abstract

Despite being an effective material for food packaging, chitosan (CS) exhibited poor ductility when processed into film, which restricted its use in this industry. In this study, composite films with enhanced properties were developed by incorporating polyvinyl alcohol (PVA) into CS through a simple solution casting method. The effects of different PVA/CS weight ratios (70:30, 50:50, and 30:70 w/w) on the morphology, mechanical properties, antibacterial activity, and soil degradation of the composite films were analyzed. Compared to the pristine PVA film, increasing the CS content in the PVA/CS composite film enhanced thickness, stiffness, roughness, antibacterial efficiency, and degradation rate, while reducing tensile strength and elongation at break. Fourier transform infrared (FTIR) spectroscopy revealed the highest intermolecular interactions in the PVA/CS composite film with 70:30 w/w. Antibacterial activity tests and soil burial analysis demonstrated that the PVA:70/CS:30 composite exhibited significantly higher antibacterial activity toward Escherichia coli and Bacillus subtilis bacteria as opposed to PVA film, along with a moderate degradation rate of 76.76% following 30 days soil burial, effectively balancing biodegradability and material integrity. These findings suggest that the PVA:70/CS:30 composite is a promising alternative for sustainable and functional biodegradable packaging solutions.
Amin Rezaei Chekani, Malek Naderi, Reza Aliasgarian, Yousef Safaei-Naeini,
Volume 22, Issue 2 (6-2025)
Abstract

This paper presents the novel fabrication method of a three-dimensional orthogonally woven (3DW) C/C-SiC-ZrB2 composite and the effects of ZrB2 and SiC particles on microstructure and the ablation behavior of the C/C–SiC–ZrB2 composite are studied. C/C–SiC–ZrB2 composite was prepared by isothermal-chemical vapor infiltration (I-CVI), slurry infiltration (SI), and liquid silicon infiltration (LSI) combined process. Pyrolytic carbon (PyC) was first infused into the 3DW preform by I-CVI at 1050°C using CH4 as a precursor in order to form a C/C preform with porous media. The next step was graphitization at 2400°C for 1hr. Then  ZrB2 was introduced into 3DW C/C preform with a void percentage of 48 by impregnating the mixture of ZrB2 and phenolic resin, followed by a pyrolysis step at 1050°C. A liquid Si alloy was infiltrated, at 1650 °C, into the 3DW C/C composites porous media containing the ZrB2 particles to form a SiC–ZrB2 matrix. An oxyacetylene torch flame was utilized to investigate The ablation behavior. ZrB2 particles, along with the SiC matrix situated between carbon fiber bundles, form a compact ZrO2-SiO2 layer. This layer acts as a barrier, restricting oxygen infiltration into the composite and reducing the erosion of carbon fibers. The findings were supported by FESEM imaging and further confirmed through x-ray diffraction and EDS analysis. The addition of ZrB2 to the C/C-SiC composite resulted in a lower mass and linear ablation rate; 2.20 mg/s and 1.4 µm/s respectively while those for C/C-SiC composite were 4.8 mg/s and 6.75 µm/s after ablation under an oxyacetylene flame (2500°C) for 120 s.
 

Page 5 from 5     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb