

Modal Testing (Lecture 1)

Dr. Hamid Ahmadian

School of Mechanical Engineering Iran University of Science and Technology ahmadian@iust.ac.ir

- Introduction to Modal Testing
- Applications of Modal Testing
- Philosophy of Modal Testing
- Summary of Theory
- Summary of Measurement Methods
- Summary of Modal Analysis Processes
- Review of Test Procedures and Levels

Introduction to Modal Testing

Experimental Structural Dynamics

- To understand and to control the many vibration phenomenon in practice
 - Structural integrity (Turbine blades- Suspension Bridges)
 - Performance (malfunction, disturbance, discomfort)

Overview of Modal Testing

- Necessities for experimental observations
 - Nature and extend of vibration in operation
 - Verifying theoretical models
 - Material properties under dynamic loading (damping capacity, friction,...)

Test types corresponding to objectives:

- Operational Force/Response measurements
 - Response measurement of PZL Mielec Skytruck Mode Shapes (3.17 Hz, 1.62 %), (8.39 Hz, 1.93 %)

- Modal Testing in a controlled environment/ Resonance Testing/ Mechanical Impedance Method
 - Testing a component or a structure with the objective of obtaining mathematical model of dynamical/vibration behavior
 - Structural Analysis of ULTRA Mirror

Milestones in the development:

- Kennedy and Pancu (1947)
 - Natural frequencies and damping of aircrafts
- Bishop and Gladwell (1962)
 - Theory of resonance testing
- ISMA (bi-annual since 1975)
- IMAC (annual since 1982)

Model Validation/Correlation:

- Producing major test modes validates the model
 - Natural frequencies
 - Mode shapes
 - Damping information are not available in FE models

Applications of Modal Testing (continued)

- Model Updating
 - Correlation of experimental/analytical model
 - Adjust/correct the analytical model
 - Optimization procedures are used for updating.

203

Applications of Modal Testing (continued)

- Component Model
 Identification
 - Substructure process
 - The component model is incorporated into the structural assembly

Applications of Modal Testing (continued)

- Force Determination
 - Knowledge of dynamic force is required
 - Direct force measurement is not possible
 - Measurement of response + Analytical Model results the external force

$$\left(\left[K \right] - \omega^2 \left[M \right] \right) \left\{ x \right\} = \left\{ f \right\}$$

Overview of Modal Testing

Philosophy of Modal Testing

- Integration of three components:
 - Theory of vibration
 - Accurate vibration measurement
 - Realistic and detailed data analysis
- Examples:
 - Quality and suitability of data for process
 - Excitation type
 - Understanding of forms and trends of plots
 - Choice of curve fitting
 - Averaging

Overview of Modal Testing

Summary of Theory (MDOF)

Definition of FRF:

$$H(\omega) = \left(\begin{bmatrix} K \end{bmatrix} - \omega^2 \begin{bmatrix} M \end{bmatrix} + i \begin{bmatrix} D \end{bmatrix} \right)^{-1}$$
$$h_{jk}(\omega) = \frac{x_j(\omega)}{f_k(\omega)} = \sum_{r=1}^N \frac{\phi_{jr} \phi_{kr}}{\omega_r^2 - \omega^2}.$$

- Curve-fitting the measured FRF:
 - Modal Model is obtained
 - Spatial Model is obtained

Overview of Modal Testing

Summary of Measurement Methods

- Basic measurement system:
 - Single point excitation

Spectrum Analyzer

Overview of Modal Testing

Summary of Modal Analysis Processes

- Analysis of measured FRF data
 - Appropriate type of model (SDOF, MDOF,...)
 - Appropriate parameters for chosen model

Overview of Modal Testing

Review of Test Procedures and Levels

- The procedure consists of:
 - FRF measurement
 - Curve-Fitting
 - Construct the required model
- Different level of details and accuracy in above procedure is required depending on the application.

Review of Test Procedures and Levels

• Levels according to Dynamic Testing Agency:

Level	Natural Freq	Damping ratio	Mode Shapes	Usable for validation	Out of range residues	Updating
0						
1			Only in few points			
2						
3						
4						

- Ewins, D.J., 2000, "Modal Testing; theory, practice and application", 2nd edition, Research studies press Ltd.
- McConnell, K.G., 1995, "Vibration testing; theory and practice", John Wiley & Sons.
- Maia, *et. al.*, 1997, "Theoretical and Experimental Modal Analysis", Research studies press Ltd.

- Home Works (20%)
- Mid-term Exam (20%)
- Course Project (30%)
- Final Exam (30%)

Modal Testing (Lecture 10)

Dr. Hamid Ahmadian

School of Mechanical Engineering Iran University of Science and Technology ahmadian@iust.ac.ir

- Analysis of weakly nonlinear structures
- Approximate analysis of nonlinear structures
- Cubic stiffness nonlinearity
- Coulomb friction nonlinearity
- Other nonlinearities and other descriptions

Analysis of weakly nonlinear structures

- The whole bases of modal testing assumes linearity:
 - Response linearly related to the excitation
 - Response to simultaneous application of several forces can be obtained by superposition of responses to individual forces
- An introduction to characteristics of weakly nonlinear systems is given to detect if any nonlinearity is involved during modal test.

$$\begin{split} m\ddot{x} + c\dot{x} + kx + k_3 x^3 &= F\sin(\omega t - \phi) \\ \Rightarrow x(t) &= X\sin(\omega t) \\ \Rightarrow -m\omega^2 X\sin(\omega t) + c\omega X\cos(\omega t) + kX\sin(\omega t) + k_3 X^3\sin^3(\omega t) \\ &= F\sin(\omega t - \phi) \\ \Rightarrow -m\omega^2 X\sin(\omega t) + c\omega X\cos(\omega t) + kX\sin(\omega t) + \\ &\quad k_3 X^3 \bigg(\frac{3}{4}\sin(\omega t) - \frac{1}{4}\sin(3\omega t)\bigg) = F\sin(\omega t - \phi) \end{split}$$

IUST ,Modal Testing Lab ,Dr H Ahmadian

Theoretical Basis

 $-m\omega^2 X \sin(\omega t) + c\omega X \cos(\omega t) + kX \sin(\omega t) +$

$$k_3 X^3 \left(\frac{3}{4}\sin(\omega t) - \frac{1}{4}\sin(3\omega t)\right) =$$

 $F\sin(\omega t)\cos(\phi) - F\cos(\omega t)\sin(\phi)$

$$\Rightarrow \begin{cases} -m\omega^2 X + kX + \frac{3}{4}k_3 X^3 = F\cos(\phi) \\ c\omega X = -F\sin(\phi) \end{cases}$$

IUST ,Modal Testing Lab ,Dr H Ahmadian

Theoretical Basis

Theoretical Basis

Theoretical Basis

Softening-stiffness effect

Theoretical Basis

Softening-stiffness effect

Theoretical Basis

Theoretical Basis

Softening-stiffness effect

Theoretical Basis

Theoretical Basis

Other nonlinearities and other descriptions

- Backlash
- Bilinear Stiffness
- Microslip friction damping
- Quadratic (and other power law damping)

Modal Testing (Lecture 2)

Dr. Hamid Ahmadian

School of Mechanical Engineering Iran University of Science and Technology ahmadian@iust.ac.ir

MODAL ANALYSIS THEORY

- Understanding of how the structural parameters of mass, damping, and stiffness relate to
 - the impulse response function (time domain),
 - the frequency response function (Fourier, or frequency domain), and
 - the transfer function (Laplace domain)
- for single and multiple degree of freedom systems.

- SDOF system
 - Time Domain: Impulse Response Function
 - Presentation of FRF
 - Properties of FRF
- Undamped MDOF system
- MDOF system with proportional damping

• Three classes of system:

- Undamped
- Viscously-damped
- Structurally Damped
- Response Models: $H(\omega) = \frac{X(\omega)}{F(\omega)} = \begin{cases} \frac{1}{k} \\ \frac{1}{k} \end{cases}$

$$\begin{vmatrix} \frac{1}{k - m\omega^2} \\ \frac{1}{k - m\omega^2 + ic\omega} \\ \frac{1}{k - m\omega^2 + id} \end{vmatrix}$$

IUST ,Modal Testing Lab ,Dr H Ahmadian

Time Domain: Impulse Response Function

Theoretical Basis

$$\left[-M \,\omega^2 + j \,C \,\omega + K \right] X(\omega) = F(\omega) \qquad \qquad H(\omega) = \frac{X(\omega)}{F(\omega)}$$

$$H(\omega) = \frac{1}{-M \,\omega^2 + j \,C \,\omega + K} = \frac{1/M}{-\omega^2 + j \left(\frac{C}{M}\right)\omega + \left(\frac{K}{M}\right)}$$

$$H(\omega) = \frac{1/M}{(j \ \omega - \lambda_1) \ (j \ \omega - \lambda_1^*)} = \frac{A}{(j \ \omega - \lambda_1)} + \frac{A^*}{(j \ \omega - \lambda_1^*)}$$

IUST ,Modal Testing Lab ,Dr H Ahmadian

Alternative Forms of FRF

Receptance $X(\omega)$ Inverse is "Dynamic $F(\omega)$ Stiffness" Mobility Inverse is "Dynamic Impedance" Inertance Inverse is "Apparent" mass"

 $\frac{V(\omega)}{F(\omega)} = i\omega \frac{X(\omega)}{F(\omega)}$ $\frac{A(\omega)}{F(\omega)} = -\omega^2 \frac{X(\omega)}{F(\omega)}$

Graphical Display of FRF

Theoretical Basis

Graphical Display of FRF

The magnitude of the three mobility functions (accelerance, mobility and compliance)

Theoretical Basis

Stiffness and Mass Lines

IUST ,Modal Testing Lab ,Dr H Ahmadian

Theoretical Basis

- Real part
- Imaginary part

Theoretical Basis

 For structural damping the Receptance and Inertance plots are circles.

Properties of SDOF FRF Plots

Nyquist Mobility for viscose damping $Y(\omega) = \frac{\iota\omega}{k - m\omega^2 \pm ic\omega}$ $\operatorname{Re}(Y) = \frac{c\omega^{2}}{(k - m\omega^{2})^{2} + (c\omega)^{2}} \quad \operatorname{Im}(Y) = \frac{\omega(k - m\omega^{2})}{(k - m\omega^{2})^{2} + (c\omega)^{2}}$ $U = \left(\operatorname{Re}(Y) - \frac{1}{2c} \right), \quad V = \operatorname{Im}(Y)$ $U^{2} + V^{2} = \frac{\left((k - m\omega^{2})^{2} + (c\omega)^{2}\right)^{2}}{4c^{2}\left((k - m\omega^{2})^{2} + (c\omega)^{2}\right)^{2}} = \left(\frac{1}{2c}\right)^{2}$

IUST ,Modal Testing Lab ,Dr H Ahmadian

Properties of SDOF FRF Plots Nyquist Receptance for structural damping $H(\omega) = \frac{1}{k + id - m\omega^2} = \frac{\left(k - m\omega^2\right) - id}{\left(k - m\omega^2\right)^2 + d^2}$ $U = \frac{(k - m\omega^{2})}{(k - m\omega^{2})^{2} + d^{2}}, V = \frac{d}{(k - m\omega^{2})^{2} + d^{2}}$ $U^{2} + \left(V + \frac{1}{2d}\right)^{2} = \left(\frac{1}{2d}\right)^{2}$

Theoretical Basis

Basic Assumptions

- The structure is assumed to be linear
- The structure is time invariant
- The structure obeys Maxwell's reciprocity
- The structure is observable
 - loose components, or degrees-offreedom of motion that are not measured, are not completely observable.

Modal Testing (Lecture 3)

Dr. Hamid Ahmadian

School of Mechanical Engineering Iran University of Science and Technology ahmadian@iust.ac.ir

- Undamped MDOF Systems
- MDOF Systems with Proportional Damping
- MDOF Systems with General Structural Damping
- General Force Vector
- Undamped Normal Mode

203 l

Undamped MDOF Systems

- The equation of motion: $[M]{\ddot{x}(t)} + [K]{x(t)} = {f(t)}$
- The modal model: $[\Phi], \Gamma = diag(\omega_1^2, \omega_2^2, ..., \omega_N^2)$
- The orthogonality:
- $[\Phi]^{T}[M][\Phi] = [I], [\Phi]^{T}[K][\Phi] = [\Gamma].$ Forced response solution:

$$\left(\begin{bmatrix} K \end{bmatrix} - \omega^2 \begin{bmatrix} M \end{bmatrix} \right) \left\{ X \right\} e^{i\omega t} = \left\{ F \right\} e^{i\omega t}$$
$$\left\{ X \right\} = \left(\begin{bmatrix} K \end{bmatrix} - \omega^2 \begin{bmatrix} M \end{bmatrix} \right)^{-1} \left\{ F \right\} \Longrightarrow \left\{ X \right\} = \begin{bmatrix} \alpha(\omega) \end{bmatrix} \left\{ F \right\}$$

IUST ,Modal Testing Lab ,Dr H Ahmadian

Response Model

 $\left(\left[K \right] - \omega^2 \left[M \right] \right) = \left[\alpha(\omega) \right]^{-1}$ $\left[\Phi\right]^{T}\left(\left[K\right] - \omega^{2}\left[M\right]\right)\left[\Phi\right] = \left[\Phi\right]^{T}\left[\alpha(\omega)\right]^{-1}\left[\Phi\right]$ $\left(\left[\Gamma \right] - \omega^2 \left[I \right] \right) = \left[\Phi \right]^T \left[\alpha(\omega) \right]^{-1} \left[\Phi \right]$ $\left[\alpha(\omega)\right]^{-1} = \left[\Phi\right]^{-T} \left(\left[\Gamma\right] - \omega^{2}[I]\right) \left[\Phi\right]^{-1}$ $\left[\alpha(\omega)\right] = \left[\Phi\right] \left[\left[\Gamma\right] - \omega^{2}\left[I\right]\right]^{-1} \left[\Phi\right]^{T}$

Theoretical Basis

Example (continued):

Theoretical Basis

IUST ,Modal Testing Lab ,Dr H Ahmadian

MDOF Systems with Proportional Damping

 A proportionally damped matrix is diagonalized by normal modes of the corresponding undamped system

$$[\Phi]^T[D][\Phi] = diag(d_1, d_2, \cdots, d_N)$$

Special cases:

$$\begin{bmatrix} D \end{bmatrix} = \beta \begin{bmatrix} K \end{bmatrix},$$
$$\begin{bmatrix} D \end{bmatrix} = \delta \begin{bmatrix} M \end{bmatrix},$$
$$\begin{bmatrix} D \end{bmatrix} = \beta \begin{bmatrix} K \end{bmatrix} + \delta \begin{bmatrix} M \end{bmatrix}.$$

IUST ,Modal Testing Lab ,Dr H Ahmadian

MDOF Systems with Structurally Proportional Damping

Response Model

 $\left(\left[K \right] + i \left[D \right] - \omega^2 \left[M \right] \right) = \left[\alpha(\omega) \right]^{-1}$ $\left[\Phi\right]^{T}\left(\left[K\right]+i\left[D\right]-\omega^{2}\left[M\right]\right)\left[\Phi\right]=\left[\Phi\right]^{T}\left[\alpha(\omega)\right]^{-1}\left[\Phi\right]$ $\left(\left[\omega_r^2(1+i\eta_r^2)\right] - \omega^2[I]\right) = \left[\Phi\right]^T \left[\alpha(\omega)\right]^{-1} \left[\Phi\right]$ $[\alpha(\omega)]^{-1} = [\Phi]^{-T} ([\omega_r^2(1+i\eta_r^2)] - \omega^2[I]) [\Phi]^{-1}$ $\left[\alpha(\omega)\right] = \left[\Phi\right] \left[\left[\omega_r^2 (1+i\eta_r^2)\right] - \omega^2 [I]\right]^{-1} \left[\Phi\right]^T$ **Real Residue** $\alpha_{jk}(\omega) = \sum_{r=1}^{N} \frac{\phi_{jr}\phi_{kr}}{\omega_r^2(1+i\eta_r^2) - \omega^2}$ **Complex Pole**

Theoretical Basis

MDOF Systems with Viscously Proportional Damping

Response Model

 $([K]+i\omega[C]-\omega^2[M])=[\alpha(\omega)]^{-1}$ $\left[\Phi\right]^{T}\left(\left[K\right]+i\omega\left[C\right]-\omega^{2}\left[M\right]\right)\left[\Phi\right]=\left[\Phi\right]^{T}\left[\alpha(\omega)\right]^{-1}\left[\Phi\right]$ $\left(\left[\omega_r^2\right] + i\omega\left[2\zeta_r\omega_r\right] - \omega^2\left[I\right]\right) = \left[\Phi\right]^T \left[\alpha(\omega)\right]^{-1} \left[\Phi\right]$ $\left[\alpha(\omega)\right]^{-1} = \left[\Phi\right]^{-T} \left[\left[\omega_r^2\right] + i\omega\left[2\zeta_r\omega_r\right] - \omega^2[I]\right] \left[\Phi\right]^{-1}$ $\left[\alpha(\omega)\right] = \left[\Phi\right] \left[\left[\omega_r^2\right] + i\omega\left[2\zeta_r\omega_r\right] - \omega^2\left[I\right]\right]^{-1} \left[\Phi\right]^T$ $\alpha_{jk}(\omega) = \sum_{r=1}^{N} \frac{\phi_{jr}\phi_{kr}}{\omega_{r}^{2} - \omega^{2} + 2\zeta_{r}\omega_{r}\omega}$

Theoretical Basis

MDOF Systems with General Structural Damping

• The equation of motion: $[M]{\ddot{x}(t)} + ([K] + i[D]){x(t)} = {f(t)}$

The orthogonality:

$$\begin{bmatrix} \Phi \end{bmatrix}^T \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} \Phi \end{bmatrix} = \begin{bmatrix} I \end{bmatrix}, \begin{bmatrix} \Phi \end{bmatrix}^T \begin{bmatrix} K + iD \end{bmatrix} \begin{bmatrix} \Phi \end{bmatrix} = \begin{bmatrix} \Gamma \end{bmatrix}$$
Complex Mode Shapes

• Forced response solution: Complex Eigen-values $\left(\begin{bmatrix} K \end{bmatrix} + i \begin{bmatrix} D \end{bmatrix} - \omega^2 \begin{bmatrix} M \end{bmatrix} \right) \left\{ X \right\} e^{i\omega t} = \left\{ F \right\} e^{i\omega t}$ $\left\{ X \right\} = \left(\begin{bmatrix} K \end{bmatrix} + i \begin{bmatrix} D \end{bmatrix} - \omega^2 \begin{bmatrix} M \end{bmatrix} \right)^{-1} \left\{ F \right\} \Longrightarrow \left\{ X \right\} = \begin{bmatrix} \alpha(\omega) \end{bmatrix} \left\{ F \right\}$

Theoretical Basis

Example:

Pr oportional [D] = 0.05[K] $\Gamma = (1+i0.05) \begin{bmatrix} 950 \\ 3352 \\ 6698 \end{bmatrix}, \left[\Phi\right] = \begin{bmatrix} 0.464 & -0.218 & -1.318 \\ 0.536 & -0.782 & 0.318 \\ 0.635 & 0.493 & 0.142 \end{bmatrix}$ *Non* – Proportional $d_1 = 0.3k_1, d_j = 0.0, j = 2,...,6$ $\Gamma = \begin{bmatrix} 957(1+i0.067) \\ 3354(1+i0.042) \end{bmatrix}$ 6690(1+i0.078)Almost real modes $\begin{bmatrix} \Phi \end{bmatrix} = \begin{bmatrix} 0.463(-5.5^{\circ}) & 0.217(173^{\circ}) & 1.318(181^{\circ}) \\ 0.537(0.0^{\circ}) & 0.784(181^{\circ}) & 0.318(-6.7^{\circ}) \\ 0.636(1.0^{\circ}) & 0.492(-1.3^{\circ}) & 0.142(-3.1^{\circ}) \end{bmatrix}$ Theoretical Basis IUST ,Modal Testing Lab ,Dr H Ahmadian

$$m_{1} = 1kg, m_{2} = 0.95kg, m_{3} = 1.05kg$$

$$k_{j} = 1e3N/m, j = 1,...,6$$
Undamped
$$\Gamma = \begin{bmatrix} 999 \\ 3892 \\ 4124 \end{bmatrix}, [\Phi] = \begin{bmatrix} 0.577 & -0.602 & 0.552 \\ 0.567 & -0.215 & -0.827 \\ 0.587 & 0.752 & 0.207 \end{bmatrix}$$
Proportional
$$[D] = 0.05[K],$$

$$\Gamma = (1+i0.05) \begin{bmatrix} 999 \\ 3892 \\ 4124 \end{bmatrix}, [\Phi] = \begin{bmatrix} 0.577 & -0.602 & 0.552 \\ 0.567 & -0.215 & -0.827 \\ 0.567 & -0.215 & -0.827 \\ 0.587 & 0.752 & 0.207 \end{bmatrix}$$

MDOF Systems with General
Structural Damping
$$([K]+i[D]-\omega^{2}[M])=[\alpha(\omega)]^{-1}$$

$$[\Phi]^{T}([K]+i[D]-\omega^{2}[M])[\Phi]=[\Phi]^{T}[\alpha(\omega)]^{-1}[\Phi]$$

$$([\omega_{r}^{2}(1+i\eta_{r}^{2})]-\omega^{2}[I])=[\Phi]^{T}[\alpha(\omega)]^{-1}[\Phi]$$

$$[\alpha(\omega)]^{-1}=[\Phi]^{T}([\omega_{r}^{2}(1+i\eta_{r}^{2})]-\omega^{2}[I])[\Phi]^{-1}$$

$$[\alpha(\omega)]=[\Phi]([\omega_{r}^{2}(1+i\eta_{r}^{2})]-\omega^{2}[I])^{-1}[\Phi]^{T}$$

$$\alpha_{jk}(\omega)=\sum_{r=1}^{N}\frac{\phi_{jr}\phi_{kr}}{\omega_{r}^{2}(1+i\eta_{r}^{2})-\omega^{2}}$$
Complex Poles

General Force Vector

 In many situations the system is excited at several points.

Theoretical Basis

may vary in magnitude and phase.

- The response vector is referred to:
 - Forced Vibration Mode
 - or Operating Deflection Shape (ODS)
- When the excitation frequency is close to the natural frequency:
 - ODS reflects the shape of nearby mode
 - But not identical due to contributions of other modes.

Damped system normal mode:

- By carefully tuning the force vector the response can be controlled by a single mode.
- The is attained if $\{\phi\}_r^T \{F\}_s = \delta_{rs}$
- Depending upon damping condition the force vector entries may well be complex (they have different phases)

- Special Case of interest:
 - Harmonic excitation of mono-phased forces
 - Same frequency
 - Same phase
 - Magnitudes may vary
- Is it possible to obtain mono-phased response?

Undamped Normal Mode (continued)

- The real force response amplitudes: $\begin{cases} f(t) \\ = \\ \hat{F} \\ e^{i\omega t} \\ \{x(t) \\ = \\ \hat{X} \\ e^{i(\omega t - \theta)} \end{cases} ([K + iD] - \omega^2 [M]) \\ \hat{X} \\ e^{i\omega t} = \\ \hat{F} \\ e^{i\omega t} \end{cases}$
- Real and imaginary parts:

$$\left(\left[\left[K \right] - \omega^{2} \left[M \right] \right) \cos \theta + \left[D \right] \sin \theta \right) \left\{ \hat{X} \right\} = \left\{ \hat{F} \right\} \\ \left(\left[\left[K \right] - \omega^{2} \left[M \right] \right) \sin \theta + \left[D \right] \cos \theta \right) \left\{ \hat{X} \right\} = \left\{ 0 \right\}$$

• The 2nd equation is an eigen-value problem; its solutions leads to real $\{\hat{F}\}$

Solutions

Theoretical Basis

203

Undamped Normal Mode (continued)

 At a frequency that the phase lag between all forces and all responses is 90 degree then

$$\left(\!\left(\!\left[K\right]\!-\omega^2\left[M\right]\!\right)\!\sin\theta\!+\!\left[D\right]\!\cos\theta\right)\!\left\{\!\hat{X}\right\}\!=\!\left\{\!0\right\}$$

Results

- Undamped normal modes
- Natural frequencies of undamped system

Undamped Normal Mode (continued)

- The base for multishaker test procedures.
- Modal Analysis of Large Structures: Multiple
 Exciter Systems By: M.
 Phil. K. Zaveri

Modal Testing (Lecture 4)

Dr. Hamid Ahmadian

School of Mechanical Engineering Iran University of Science and Technology ahmadian@iust.ac.ir

- General Force Vector
- Undamped Normal Mode
- MDOF System with General Viscous Damping
- Force Response Solution/ General Viscous Damping

General Force Vector

 In many situations the system is excited at several points.

Theoretical Basis

Theoretical Basis

• The response is governed by: $\left(\left[K + iD \right] - \omega^2 \left[M \right] \right) \left\{ X \right\} e^{i\omega t} = \left\{ F \right\} e^{i\omega t}$

All forces have the same frequency but may vary in magnitude and phase.

The solution:

$$\{X\} = \sum_{r=1}^{N} \frac{\{\phi\}_{r}^{T} \{F\} \{\phi\}_{r}}{\omega_{r}^{2} (1 + i\eta_{r}^{2}) - \omega^{2}}$$

- The response vector is referred to:
 - Forced Vibration Mode
 - or Operating Deflection Shape (ODS)
- When the excitation frequency is close to the natural frequency:
 - ODS reflects the shape of nearby mode
 - But not identical due to contributions of other modes.

Damped system normal mode:

- By carefully tuning the force vector the response can be controlled by a single mode.
- This is attained if $\{\phi\}_r^T \{F\}_s = \delta_{rs}$
- Depending upon damping condition the force vector entries may well be complex (they have different phases)

- Special Case of interest:
 - Harmonic excitation of mono-phased forces
 - Same frequency
 - Same phase
 - Magnitudes may vary
- Is it possible to obtain mono-phased response?

Undamped Normal Mode

L-610G.03-01 ver.Z1

[Hz] = 8.803

s₅[mm] = 2.535 D(1) = .15

1-st ANTISYMM, WING BENDING

oints of excitation: 1, 2, 269, 134, 88, 89, 270, 190

Theoretical Basis

Undamped Normal Mode (continued)

- The real force response amplitudes: $\begin{cases} f(t) \\ = \\ \hat{F} \\ e^{i\omega t} \\ \{x(t) \\ = \\ \hat{X} \\ e^{i(\omega t - \theta)} \end{cases} ([K + iD] - \omega^2 [M]) \hat{X} \\ e^{i(\omega t - \theta)} = \\ \hat{F} \\ e^{i\omega t} \end{cases}$
- Real and imaginary parts:

$$\left(\left[\left[K \right] - \omega^{2} \left[M \right] \right) \cos \theta + \left[D \right] \sin \theta \right) \left\{ \hat{X} \right\} = \left\{ \hat{F} \right\} \\ \left(\left[\left[K \right] - \omega^{2} \left[M \right] \right) \sin \theta + \left[D \right] \cos \theta \right) \left\{ \hat{X} \right\} = \left\{ 0 \right\}$$

• The 2nd equation is an eigen-value problem; its solutions leads to real $\{\hat{F}\}$

Solutions

Theoretical Basis

203

Undamped Normal Mode (continued)

 At a frequency that the phase lag between all forces and all responses is 90 degree then

$$\left(\left[\left[K \right] - \omega^{2} \left[M \right] \right) \sin \theta + \left[D \right] \cos \theta \right) \left\{ \hat{X} \right\} = \{ 0 \}$$

• Results $\Rightarrow \left(\left[K \right] - \omega^{2} \left[M \right] \right) \left\{ \hat{X} \right\} = \{ 0 \}$

- Undamped normal modes
- Natural frequencies of undamped system

Undamped Normal Mode (continued)

- The base for multishaker test procedures.
- Modal Analysis of Large Structures: Multiple Exciter Systems By: M. Phil. K. Zaveri

 Next the orthogonality properties of the system in 2N space is used for force response solution.

Theoretical Basis

The above simplification is due to the fact that eigen-values and eigen-vectors occur in complex conjugate pairs.

Single point excitation:

Modal Testing (Lecture 5)

Dr. Hamid Ahmadian

School of Mechanical Engineering Iran University of Science and Technology ahmadian@iust.ac.ir

Modal Analysis of Rotating Structures

- Non-symmetry in system matrices
- Modes of undamped rotating system
 - Symmetric Stator
 - Non-Symmetric Stator
- FRF's of rotating system
- Out-of-balance excitation
 - Synchronous excitation
 - Non-Synchronous excitation

IUST ,Modal Testing Lab ,Dr H Ahmadian

Non-symmetry in System Matrices

The rotating structures are subject to additional forces:

- Gyroscopic forces
- Rotor-stator rub forces
- Electrodynamic forces
- Unsteady aerodynamic forces
- Time varying fluid forces
- These forces can destroy the symmetry of the system matrices.

Non-rotating system properties

- A rigid disc mounted on the free end of a rigid shaft of length L,
- The other end of is effectively pin-jointed.

$$(I_0/L)\ddot{x} + k_x L x = 0$$

 $(I_0/L)\ddot{y} + k_y L y = 0$

Symmetric stator

$$k_{x} = k_{y} = k, \quad \text{Support is symmetric}$$

$$x = Xe^{i\omega t}, \quad \text{Simple harmonic motion}$$

$$y = Ye^{i\omega t}, \quad \left[\begin{pmatrix} k - \omega^{2}I_{0}/L^{2} \end{pmatrix} (i\omega J\Omega_{z}/L^{2}) \\ (-i\omega J\Omega_{z}/L^{2}) \end{pmatrix} (k - \omega^{2}I_{0}/L^{2}) \right] \left\{ \begin{matrix} X \\ Y \end{matrix} \right\} = \begin{cases} 0 \\ 0 \end{cases},$$

$$\omega^{4} - \left(2\frac{kL^{2}}{I_{0}} + \left(\frac{J\Omega_{z}}{I_{0}} \right)^{2} \right) \omega^{2} + \left(\frac{kL^{2}}{I_{0}} \right)^{2} = 0.$$

Theoretical Basis

FRF of the Rotating Structure

$$\begin{bmatrix} I_0 / L^2 & 0 \\ 0 & I_0 / L^2 \end{bmatrix} \begin{bmatrix} \ddot{x} \\ \ddot{y} \end{bmatrix} + \begin{bmatrix} c & J\Omega_z / L^2 \\ -J\Omega_z / L^2 & c \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix},$$

$$\begin{bmatrix} \alpha(\omega) \end{bmatrix} = \begin{bmatrix} (k - \omega^2 I_0 / L^2 + ic\omega) & (i\omega J\Omega_z / L^2) \\ -(i\omega J\Omega_z / L^2) & (k - \omega^2 I_0 / L^2 + ic\omega) \end{bmatrix}^{-1}$$

$$\Rightarrow \begin{bmatrix} \alpha_{xx}(\omega) = \alpha_{yy}(\omega) \\ \alpha_{xy}(\omega) = -\alpha_{yx}(\omega) \end{bmatrix}$$

Coupling Effect IUST ,Modal Testing Lab ,Dr H Ahmadian

FRF of the Rotating Structure with External Damping

Theoretical Basis

Out-of-balance excitation

Response analysis for the particular case of excitation provided by out-ofbalance forces is investigated:

- When the force results from an out-ofbalance mass on the rotor, it is of a synchronous nature
- When the force results from an out-ofbalance mass on a co/counter rotating shaft, it is of a non-synchronous nature

Theoretical Basis

Non-Synchronous OOB Excitation

 Force is generated by another rotor at different speed

 $Excitation \Rightarrow \beta \Omega$

$$\begin{cases} X \\ Y \end{cases} e^{i\beta\Omega t} = F_{OOB} \begin{cases} A \\ -iA \end{cases} e^{i\beta\Omega t} \\ A = \frac{L^2}{I_0 \left(\omega_0^2 - \beta\Omega^2 (\beta - \gamma)\right)} \end{cases}$$

The essential results are the same as for synchronous case.

Theoretical Basis

Modal Testing (Lecture 6)

Dr. Hamid Ahmadian

School of Mechanical Engineering Iran University of Science and Technology ahmadian@iust.ac.ir

Theoretical Basis

- Analysis using rotating frame
- Damping in rotating and stationary frames
- Dynamic analysis of general rotor-stator systems
 - Linear Time Invariant Rotor-Stator Systems
 - LTI Rotor-Stator Viscous Damp System
 - LTI Systems Eigen-Properties

IUST ,Modal Testing Lab ,Dr H Ahmadian

$$\begin{cases} x_r \\ y_r \end{cases} = \begin{bmatrix} \cos(\Omega t) & \sin(\Omega t) \\ -\sin(\Omega t) & \cos(\Omega t) \end{bmatrix} \begin{cases} x \\ y \end{cases} = \begin{bmatrix} T_1 \end{bmatrix} \begin{cases} x \\ y \end{cases},$$

$$\begin{cases} \dot{x}_r \\ \dot{y}_r \end{cases} = \begin{bmatrix} \cos(\Omega t) & \sin(\Omega t) \\ -\sin(\Omega t) & \cos(\Omega t) \end{bmatrix} \begin{cases} \dot{x} \\ \dot{y} \end{cases} + \Omega \begin{bmatrix} -\sin(\Omega t) & \cos(\Omega t) \\ -\cos(\Omega t) & -\sin(\Omega t) \end{bmatrix} \begin{cases} x \\ y \end{cases} = \begin{bmatrix} T_1 \end{bmatrix} \begin{cases} \dot{x} \\ \dot{y} \end{cases} + \Omega \begin{bmatrix} T_2 \end{bmatrix} \begin{cases} x \\ y \end{cases},$$

$$\begin{cases} \ddot{x}_r \\ \ddot{y}_r \end{cases} = \begin{bmatrix} \cos(\Omega t) & \sin(\Omega t) \\ -\sin(\Omega t) & \cos(\Omega t) \end{bmatrix} \begin{cases} \ddot{x} \\ \ddot{y} \end{cases} + 2\Omega \begin{bmatrix} -\sin(\Omega t) & \cos(\Omega t) \\ -\cos(\Omega t) & -\sin(\Omega t) \end{bmatrix} \begin{cases} \dot{x} \\ \dot{y} \end{cases} - \Omega^2 \begin{bmatrix} \cos(\Omega t) & \sin(\Omega t) \\ -\sin(\Omega t) & \cos(\Omega t) \end{bmatrix} \begin{cases} x \\ y \end{cases}$$
$$= \begin{bmatrix} T_1 \end{bmatrix} \begin{cases} \ddot{x} \\ \ddot{y} \end{cases} + 2\Omega \begin{bmatrix} T_2 \end{bmatrix} \begin{cases} \dot{x} \\ \dot{y} \end{cases} + \Omega^2 \begin{bmatrix} T_1 \end{bmatrix} \begin{cases} x \\ x \end{cases}$$

IUST ,Modal Testing Lab ,Dr H Ahmadian

Analysis using rotating frame Equation of Motion in Stationary Coordinates $\begin{bmatrix} I_0 / L^2 & 0 \\ 0 & I_0 / L^2 \end{bmatrix} \begin{bmatrix} \ddot{x} \\ \ddot{y} \end{bmatrix} + \begin{bmatrix} 0 & J\Omega_z / L^2 \\ -J\Omega_z / L^2 & 0 \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} k_x & 0 \\ 0 & k_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$ $\omega_{1} = \sqrt{\omega_{0}^{2} + (\gamma \Omega_{z}/2)^{2}} - \gamma \Omega_{z}/2$ $\omega_{2} = \sqrt{\omega_{0}^{2} + (\gamma \Omega_{z}/2)^{2}} + \gamma \Omega_{z}/2$ $\begin{bmatrix} I_0 / L^2 & 0 \\ 0 & I_0 / L^2 \end{bmatrix} \begin{bmatrix} \ddot{x}_r \\ \ddot{y}_r \end{bmatrix} + \begin{bmatrix} 0 & -2\Omega_z I_0 / L^2 + J\Omega_z / L^2 \\ 2\Omega_z I_0 / L^2 - J\Omega_z / L^2 & 0 \end{bmatrix} \begin{bmatrix} \dot{x}_r \\ \dot{y}_r \end{bmatrix}$ $+\begin{bmatrix} -\Omega_{z}^{2}I_{0}/L^{2} + J\Omega_{z}^{2}/L^{2} + k_{x}c^{2} + k_{y}s^{2} & cs(k_{y} - k_{x}) \\ cs(k_{y} - k_{x}) & -\Omega_{z}^{2}I_{0}/L^{2} + J\Omega_{z}^{2}/L^{2} + k_{x}c^{2} + k_{y}s^{2} \end{bmatrix} \begin{bmatrix} x_{r} \\ y_{r} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$ $\omega_1 = \sqrt{\omega_0^2 + (\gamma \Omega_z/2)^2} - \gamma \Omega_z/2 + \Omega_z$ $\omega_2 = \sqrt{\omega_0^2 + (\gamma \Omega_z/2)^2} + \gamma \Omega_z/2 - \Omega_z$ Note: Eigenvectors remain unchanged IUST ,Modal Testing Lab ,Dr H Ahmadian Theoretical Basis

$$\begin{cases} F_{xr} \\ F_{yr} \end{cases} = \begin{bmatrix} \cos(\Omega t) & \sin(\Omega t) \\ -\sin(\Omega t) & \cos(\Omega t) \end{bmatrix} \begin{cases} F_x \\ F_y \end{cases}.$$

For Example: $\begin{cases} F_{xr} \\ F_{yr} \end{cases} = \begin{bmatrix} \cos(\Omega t) & \sin(\Omega t) \\ -\sin(\Omega t) & \cos(\Omega t) \end{bmatrix} \begin{bmatrix} F_0 \\ 0 \end{bmatrix} \cos(\omega t) \\ 0 \end{bmatrix} \cos(\omega t) \\ = \frac{F_0}{2} \begin{cases} \cos(\omega - \Omega)t + \cos(\omega + \Omega)t \\ \sin(\omega - \Omega)t + \sin(\omega + \Omega)t \end{cases}$

Internal Damping in rotating and stationary frames

Equation of Motion in Rotating Coordinates $\begin{bmatrix} I_0 / L^2 & 0 \\ 0 & I_0 / L^2 \end{bmatrix} \begin{bmatrix} \ddot{x}_r \\ \ddot{y}_r \end{bmatrix} + \begin{bmatrix} c_I & -2\Omega_z I_0 / L^2 + J\Omega_z / L^2 \\ 2\Omega_z I_0 / L^2 - J\Omega_z / L^2 & c_I \end{bmatrix} \begin{bmatrix} \dot{x}_r \\ \dot{y}_r \end{bmatrix} + \begin{bmatrix} -\Omega_z^2 I_0 / L^2 + J\Omega_z^2 / L^2 + k & 0 \\ 0 & -\Omega_z^2 I_0 / L^2 + J\Omega_z^2 / L^2 + k \end{bmatrix} \begin{bmatrix} x_r \\ y_r \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$

Equation of Motion in Stationary Coordinates

$$\begin{bmatrix} I_0 / L^2 & 0 \\ 0 & I_0 / L^2 \end{bmatrix} \begin{bmatrix} \ddot{x} \\ \ddot{y} \end{bmatrix} + \begin{bmatrix} c_I & J\Omega_z / L^2 \\ -J\Omega_z / L^2 & c_I \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} k_x & \Omega_z c_I \\ -\Omega_z c_I & k_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

Theoretical Basis

Internal/External Damping in 2DOF System

 $\begin{bmatrix} I_0 / L^2 & 0 \\ 0 & I_0 / L^2 \end{bmatrix} \begin{bmatrix} \ddot{x} \\ \ddot{y} \end{bmatrix} + \begin{bmatrix} c_E + c_I & J\Omega_z / L^2 \\ -J\Omega_z / L^2 & c_E + c_I \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix}$ $+\begin{bmatrix} k_x & \Omega_z c_I \\ -\Omega_z c_I & k_y \end{bmatrix} \begin{cases} x \\ y \end{cases} = \begin{cases} 0 \\ 0 \end{cases},$ At super critical speeds the real parts of eigen-values may become positive, i.e. unstable system

Dynamic Analysis of General Rotor-Stator Systems

- The rotating machines and their modal testing is much more complex
 - Non-symmetric bearing support
 - Fixed/Rotating observation frame
 - Non-axisymmetric rotors
 - Internal/External damping
- These lead to:
 - Time-varying modal properties
 - Response harmonies not present in the excitation
 - Instabilites (negative modal damping)

Theoretical Basis

Dynamic Analysis of General Rotor-Stator Systems

- Equation of motion of rotating systems are prone:
 - to lose the symmetry
 - to generate complex eigen-values/vectors from velocity/displacement related nonsymmetry
 - to include time varying coefficients as appose to conventional Linear Time Invariant (LTI) systems

Theoretical Basis

Dynamic Analysis of General Rotor-Stator Systems

System Type	Stationary Coord.	Rotating Coord.
R-symm;S-symm	LTI	LTI
R-symm;S-nonsymm	LTI	L(t)
R-nonsymm;S-symm	L(t)	LTI
R-nonsymm;S-nonsymm	L(t)	L(t)

LTI: Linear Time Invariant L(t): Linear Time Dependent

Theoretical Basis

Linear Time Invariant Rotor-Stator Systems

 $[M]{\ddot{x}} + ([C] + [G(\Omega)]){\dot{x}} + ([K] + i[D] + [E(\Omega)]){x} = {f(t)}$ $[M], [C], [K], [D] \Rightarrow Symm.$ $[G(\Omega)], [E(\Omega)] \Rightarrow Skew - symm.$

 Solution of equations will follow different routs depending upon the specific features.

Symmetric Rotor/ Non-symmetric Support

Theoretical Basis

Theoretical Basis

Skew-symmetry in damping Matrix

$$\begin{bmatrix} M \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} K \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix},$$
$$\begin{bmatrix} C \end{bmatrix} = \Delta C \begin{bmatrix} 0 & 0.5 \\ -0.5 & 0 \end{bmatrix} + (1 - \Delta C) \begin{bmatrix} 1 & -0.5 \\ -0.5 & 1 \end{bmatrix}$$

IUST ,Modal Testing Lab ,Dr H Ahmadian

LTI Systems Eigen-Properties

ΔC	λ_2	X_1	X_{2}
0.0	-0.75+1.85i	1	-1.00
0.1	-0.68+1.88i	1	-1.05+0.08i
0.3	-0.52+1.94i	1	-1.08+0.28i
0.5	-0.37+1.99i	1	-1.03+0.49i
0.7	-0.23+2.04i	1	-0.90+0.63i
0.9	-0.07+2.08i	1	-0.76+0.71i
1.0	2.11i	1	-0.69+0.73i

Theoretical Basis

Skew-symmetry in stiffness Matrix

$$\begin{bmatrix} M \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} C \end{bmatrix} = 0,$$
$$\begin{bmatrix} K \end{bmatrix} = \Delta K \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} + (1 - \Delta K) \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$$

IUST ,Modal Testing Lab ,Dr H Ahmadian

LTI Systems Eigen-Properties

ΔK	λ_2	X_1	X_{2}
0.0	2.00i	1	-1.00
0.1	1.90i	1	-1.12
0.3	1.65i	1	-1.58
0.5	1.23i	1	Infinity
0.7	0.32+1.00i	1	1.58i
0.9	0.57+0.79i	1	1.12i
1.0	0.70+0.70i	1	İ

Theoretical Basis

Modal Testing (Lecture 7)

Dr. Hamid Ahmadian

School of Mechanical Engineering Iran University of Science and Technology ahmadian@iust.ac.ir

IUST ,Modal Testing Lab ,Dr H Ahmadian

Overview of Modal Testing

Predator Aircraft Ground Vibration Test 4 Shakers used at 8 Locations

Overview of Modal Testing

Overview of Modal Testing

UNLARY LOUBEL MODAL MINIETERS and CONTROLS LABORATORY - Pate Antabelie and Patric Pargentili

Overview of Modal Testing

Extracting real modes from complex measured modes

- H Ahmadian, GML Gladwell Proceedings of the 13th International Modal Analysis (1995):
 - The optimum real mode is the one with maximum correlation with the complex measured one:

$$\max \ \frac{|\phi_{\tau}^{T}\phi_{c}|}{\|\phi_{\tau}\|^{2} \|\phi_{c}\|^{2}}.$$

Normalizing the complex measured mode shape:

$\|\boldsymbol{\phi}_{c}\|=1.$

• The problem is rewritten as:

max $(\phi_r^T \phi_c \phi_c^* \phi_r)$, subject to $\|\phi_r\| = 1$.

Overview of Modal Testing

Write $\phi_c = \phi_R + i\phi_I$, then $\phi_c \phi_c^* = U + iV$,

Overview of Modal Testing

Since *V* is skew symmetric,

$$\boldsymbol{\phi}_{r}^{T} \boldsymbol{V} \boldsymbol{\phi}_{r} = \boldsymbol{0}$$

Therefore the problem is equivalent to:

max $(\phi_r^T U \phi_r)$, Subject to $\|\phi_r\| = 1$.

IUST ,Modal Testing Lab ,Dr H Ahmadian

Overview of Modal Testing

max $(\boldsymbol{\phi}_{\boldsymbol{r}}^T \boldsymbol{U} \boldsymbol{\phi}_{\boldsymbol{r}})$, Subject to $\|\boldsymbol{\phi}_{\boldsymbol{r}}\| = 1$.

But U is an $n \times n$ positive semi-definite matrix with rank 2. Therefore it has (n-2) zero eigenvalues and 2 positive ones λ_1 , and λ_2 . The ϕ_r which maximizes (2) is the eigenvector corresponding to the larger of the two positive eigenvalues.

Overview of Modal Testing

We now show that the real vector ϕ_r , obtained as the eigenvector of U is precisely the same as the real part of the complex mode rotated so that its real part is maximized. To find this latter mode we must choose θ so that

$$\max_{\phi} \| \operatorname{Real}(\phi_{c}e^{i\theta})\|^{2}.$$

Extracting real modes

$$\| Real(\phi_{c}e^{i\theta})\|^{2} = \|\phi_{R}\cos\theta + \phi_{I}\sin\theta\|^{2},$$

$$= \phi_{R}^{T}\phi_{R}\cos^{2}\theta + \phi_{I}^{T}\phi_{I}\sin^{2}\theta + 2\phi_{R}^{T}\phi_{I}\sin\theta\cos\theta,$$

$$= \frac{\phi_{R}^{T}\phi_{R} + \phi_{I}^{T}\phi_{I}}{2} + \frac{\phi_{R}^{T}\phi_{R} - \phi_{I}^{T}\phi_{I}}{2} + \frac{\phi_{R}^{T}\phi_{R} - \phi_{I}^{T}\phi_{I}}{2}\cos 2\theta + \phi_{R}^{T}\phi_{I}\sin 2\theta,$$

so that the function is maximized or minimized when

$$\frac{\cos 2\theta}{\sin 2\theta} = \frac{\boldsymbol{\phi}_R^T \boldsymbol{\phi}_R - \boldsymbol{\phi}_I^T \boldsymbol{\phi}_I}{2\boldsymbol{\phi}_R^T \boldsymbol{\phi}_I}$$

Extracting real modes

To verify that the real part of the rotated mode, $\phi_R \cos \theta + \phi_I \sin \theta$, is an eigenvector of U, i.e.

$$(\phi_R \phi_R^T + \phi_I \phi_I^T)(\phi_R \cos \theta + \phi_I \sin \theta) = \lambda(\phi_R \cos \theta + \phi_I \sin \theta),$$

we note that this is true provided that:
$$(\phi_R^T \phi_R \cos \theta + \phi_R^T \phi_I \sin \theta) = \lambda \cos \theta,$$
$$(\phi_I^T \phi_I \cos \theta + \phi_I^T \phi_R \sin \theta) = \lambda \sin \theta.$$

Overview of Modal Testing

Extracting real modes

 $2(\boldsymbol{\phi}_{R}^{T}\boldsymbol{\phi}_{I})\cos 2\theta = (\boldsymbol{\phi}_{R}^{T}\boldsymbol{\phi}_{R} - \boldsymbol{\phi}_{I}^{T}\boldsymbol{\phi}_{I})\sin 2\theta,$ $(\phi_R^T \phi_I)(\cos^2 \theta - \sin^2 \theta) =$ $(\boldsymbol{\phi}_{R}^{T}\boldsymbol{\phi}_{R}-\boldsymbol{\phi}_{I}^{T}\boldsymbol{\phi}_{I})\sin\theta\cos\theta,$ $(\boldsymbol{\phi}_{R}^{T}\boldsymbol{\phi}_{R}\cos\theta + \boldsymbol{\phi}_{R}^{T}\boldsymbol{\phi}_{I}\sin\theta)\sin\theta =$ $(\phi_B^T \phi_T \cos \theta + \phi_T^T \phi_T \sin \theta) \cos \theta.$ This last equation implies that there is a constant λ satisfying equations (6), (7).

- E. Foltete, J. Piranda, "Transforming Complex Eigenmodes into Real Ones Based on an Appropriation Technique", Journal of Vibration and Acoustics, JANUARY 2001, Vol. 123
- S.D. GARVEY, J.E.T. PENNY, "THE RELATIONSHIP BETWEEN THE REAL AND IMAGINARY PARTS OF COMPLEX MODES", *Journal of Sound and Vibration* 1998,212(1),75-83

Modal Testing (Lecture 8)

Dr. Hamid Ahmadian

School of Mechanical Engineering Iran University of Science and Technology ahmadian@iust.ac.ir

- Non-sinusoidal Vibration and FRF Properties:
 - Periodic Vibration
 - Transient Vibration
 - Random Vibration
 - Violation of Dirichlet's conditions
 - Autocorrelation and PSD functions
 - H1 and H2
- Incomplete Response Models IUST ,Modal Testing Lab ,Dr H Ahmadian

Non-sinusoidal Vibration and FRF Properties

With the FRF data, response of a MDOF system to a set of harmonic loads:

$$\{X\}e^{i\omega t} = [\alpha(\omega)]\{F\}e^{i\omega t}$$
The same frequency

Different amplitudes and phases

 We shall now turn our attention to a range of other excitation/response situvations.

- Excitation is not simply sinusoidal but retain periodicity.
- The easiest way of computing the response is by means of Fourier Series,

$$f_k(t) = \sum_{n=1}^{\infty} F_{nk} e^{i\omega_n t} \qquad \omega_n = \frac{2\pi}{T}$$
$$x_j(t) = \sum_{n=1}^{\infty} \alpha_{jk}(\omega_n) F_{nk} e^{i\omega_n t}$$

Periodic Vibration

- To derive FRF from periodic vibration signals:
 - Determine the Fourier Series components of the input force and the relevant response
 - Both series contain components at the same set of discrete frequencies
 - The FRF can be defined at the same set of frequency points by computing the ratio of response to input components.

Theoretical Basis

Analysis via Fourier Transform

$$F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(t) e^{-i\omega t} dt$$

 $X(\omega) = H(\omega)F(\omega)$

$$x(t) = \int_{-\infty}^{+\infty} H(\omega) F(\omega) e^{i\omega t} d\omega$$

Theoretical Basis

 1∞

Response via time domain (superposition)

$$x(t) = \int_{-\infty}^{+\infty} h(t-\tau) f(\tau) d\tau$$

Let
$$\rightarrow f(t) = \delta(0) \Rightarrow F(\omega) = \frac{1}{2\pi}$$

Then
$$\rightarrow x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} H(\omega) e^{i\omega t} d\omega = h(t)$$

IUST ,Modal Testing Lab ,Dr H Ahmadian

- To derive FRF from transient vibration signals:
 - Calculation of the Fourier Transforms of both excitation and response signals
 - Computing the ratio of both signals at the same frequency
- In practice it is common to compute a DFT of the signals.

- Neither excitation nor response signal can be subject to a valid Fourier Transform:
 - Violation of Dirichlet Conditions
 - Finite number of isolated min and max
 - Finite number of points of finite discontinuity
- Here we assume the random signals to be ergodic

Sinusoidal Signal

Power Spectral Density

Theoretical Basis

Random Signal

Autocorrelation

Power Spectral Density

IUST ,Modal Testing Lab ,Dr H Ahmadian

Theoretical Basis

The autocorrelation function is real and even:

$$R_{ff}(\tau) = \int_{-\infty}^{+\infty} f(t) f(t+\tau) dt$$
$$= \int_{-\infty}^{+\infty} f(u-\tau) f(u) du = R_{ff}(-\tau)$$
$$u = t + \tau$$

The Auto/Power Spectral Density function is real and even.

Theoretical Basis

Cross Correlation / Spectral Densities

$$R_{xf}(\tau) = \int_{-\infty}^{+\infty} x(t) f(t+\tau) dt \qquad S_{xf}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} R_{xf}(\tau) e^{-i\omega\tau} d\tau$$

- Cross Correlation functions are real but not always even.
- Cross Spectral Densities are complex functions.

Frequency Domain

$$R_{ff}(\tau) = \int_{-\infty}^{+\infty} f(t) f(t+\tau) dt \Longrightarrow S_{ff}(\omega) = F^*(\omega) F(\omega)$$

$$R_{xf}(\tau) = \int_{-\infty}^{+\infty} x(t) f(t+\tau) dt \Longrightarrow S_{xf}(\omega) = X^*(\omega) F(\omega)$$

$$R_{xx}(\tau) = \int_{-\infty}^{+\infty} x(t)x(t+\tau)dt \Longrightarrow S_{xx}(\omega) = X^{*}(\omega)X(\omega)$$

IUST ,Modal Testing Lab ,Dr H Ahmadian

To derive FRF from random vibration signals:

$$H(\omega) = \frac{X(\omega)}{F(\omega)}$$
$$H_1(\omega) = \frac{X^*(\omega)X(\omega)}{X^*(\omega)F(\omega)} = \frac{S_{xx}(\omega)}{S_{xf}(\omega)}$$
$$H_2(\omega) = \frac{F^*(\omega)X(\omega)}{F^*(\omega)F(\omega)} = \frac{S_{fx}(\omega)}{S_{ff}(\omega)}$$

IUST ,Modal Testing Lab ,Dr H Ahmadian

- It is not possible to measure the response at all DOF or all modes of structure (N by N)
- Different incomplete models:
 - Reduced size (from N to n) by deleting some DOFs
 - Number of modes are a reduced as well (from N to m, usually m<n)

$$\alpha_{jk}(\omega) = \sum_{r=1}^{m < N} \frac{{}_{r} A_{jk}}{\omega_{r}^{2} - \omega^{2} + i\eta_{r} \omega_{r}^{2}}$$
$$\Rightarrow \begin{cases} \left[\omega_{r}^{2}\right]_{m \times m} \\ \left[\Phi\right]_{n \times m} \end{cases}$$

IUST ,Modal Testing Lab ,Dr H Ahmadian

Incomplete Response Models

Theoretical Basis

Modal Testing (Lecture 9)

Dr. Hamid Ahmadian

School of Mechanical Engineering Iran University of Science and Technology ahmadian@iust.ac.ir

- Sensitivity of Models
 - Modal Sensitivity
 - SDOF eigen sensitivity
 - MDOF system natural frequency sensitivity
 - MDOF system mode shape sensitivity
 - FRF Sensitivity
 - SDOF FRF sensitivity
 - MDOF FRF sensitivity

The sensitivity analysis are required:

- to help locate errors in models in updating
- to guide design optimization procedures
- they are used in the course of curve fitting
- A short summery on deducing sensitivities from experimental and analytical models is given.

$$\left(\left[K \right] - \omega_r^2 \left[M \right] \right) \left\{ \phi_r \right\} = \left\{ 0 \right\},$$

$$\frac{\partial}{\partial p} \left(\left[K \right] - \omega_r^2 \left[M \right] \right) \left\{ \phi_r \right\} = \{ 0 \},$$

$$\left(\!\left[K\right]\!-\omega_r^2\!\left[M\right]\!\right)\!\frac{\partial\{\phi_r\}}{\partial p}\!+\!\left(\frac{\partial\left[K\right]}{\partial p}\!-\!\frac{\partial\omega_r^2}{\partial p}\!\left[M\right]\!-\!\omega_r^2\frac{\partial\left[M\right]}{\partial p}\!\right]\!\!\left\{\phi_r\}\!=\!\{0\},$$

Starting from:

$$\begin{pmatrix} [K] - \omega_r^2[M] \end{pmatrix} \frac{\partial \{\phi_r\}}{\partial p} + \left(\frac{\partial [K]}{\partial p} - \frac{\partial \omega_r^2}{\partial p} [M] - \omega_r^2 \frac{\partial [M]}{\partial p} \right) \{\phi_r\} = \{0\},$$
and taking $\frac{\partial \{\phi_r\}}{\partial p} = \sum_{\substack{j=1 \ j \neq r}}^N \gamma_j \{\phi_j\}$

$$\Rightarrow \begin{pmatrix} [K] - \omega_r^2[M] \end{pmatrix} \sum_{\substack{j=1 \ j \neq r}}^N \gamma_{rj} \{\phi_j\} + \left(\frac{\partial [K]}{\partial p} - \frac{\partial \omega_r^2}{\partial p} [M] - \omega_r^2 \frac{\partial [M]}{\partial p} \right) \{\phi_r\} = \{0\}$$

IUST ,Modal Testing Lab ,Dr H Ahmadian

$$\Rightarrow \{\phi_s\}^T \left([K] - \omega_r^2 [M] \right) \sum_{\substack{j=1\\j \neq r}}^N \gamma_{rj} \{\phi_j\} + \{\phi_s\}^T \left(\frac{\partial [K]}{\partial p} - \frac{\partial \omega_r^2}{\partial p} [M] - \omega_r^2 \frac{\partial [M]}{\partial p} \right) \{\phi_r\} = \{0\}$$

$$\Rightarrow \left(\omega_s^2 - \omega_r^2\right) \gamma_{rs} + \left\{\phi_s\right\}^T \left(\frac{\partial [K]}{\partial p} - \omega_r^2 \frac{\partial [M]}{\partial p}\right) \left\{\phi_r\right\} = \left\{0\right\}$$

IUST ,Modal Testing Lab ,Dr H Ahmadian

Updating, Redesign, Reanalysis

 $\partial \omega_1^2$ $\partial \omega_1^2$ $\partial \omega_1^2$ ∂p_1 ∂p_2 ∂p_3 $\Delta \omega$ $\partial \omega_2^2$ $\partial \omega_2^2$ $\partial \omega_2^2$

Theoretical Basis

Updating, Redesign, Reanalysis

- The change in parameters must be very small for accurate analysis
- When the change in parameters is not small:
 - Higher order sensitivity analysis
 - Iterative linear sensitivity analysis

FRF Sensitivities (SDOF)

$$\alpha(\omega) = \frac{1}{k + i\omega c - \omega^2 m}$$

$$\frac{\partial \alpha(\omega)}{\partial k} = \frac{-1}{(k + i\omega c - \omega^2 m)^2}$$

$$\frac{\partial \alpha(\omega)}{\partial c} = \frac{-i\omega}{(k + i\omega c - \omega^2 m)^2}$$

$$\frac{\partial \alpha(\omega)}{\partial m} = \frac{\omega^2}{(k + i\omega c - \omega^2 m)^2}$$

IUST ,Modal Testing Lab ,Dr H Ahmadian

$$\Rightarrow ([A] + [B])^{-1} = [A]^{-1} - ([A] + [B])^{-1} [B] [A]^{-1}$$

$$take[A] \Rightarrow [Z(\omega)]_A, \qquad [A+B] \Rightarrow [Z(\omega)]_x$$

 $then \Rightarrow [Z(\omega)]_{x}^{-1} = [Z(\omega)]_{A}^{-1} - [Z(\omega)]_{x}^{-1} ([Z(\omega)]_{x} - [Z(\omega)]_{A})^{-1} [Z(\omega)]_{A}^{-1}$

$$[\alpha(\omega)]_{x} - [\alpha(\omega)]_{A} = -[\alpha(\omega)]_{x} [\Delta Z(\omega)] [\alpha(\omega)]_{A}$$

Theoretical Basis

$[\alpha(\omega)]_{x} - [\alpha(\omega)]_{A} = -[\alpha(\omega)]_{x} [\Delta Z(\omega)] [\alpha(\omega)]_{A},$

$\{\alpha_x(\omega) - \alpha_A(\omega)\}_j^T = \{\alpha_x(\omega)\}_j^T [\Delta Z(\omega)] [\alpha(\omega)]_A$

IUST ,Modal Testing Lab ,Dr H Ahmadian

E03

FRF Sensitivities (MDOF)

Starting with the analytical receptance matrix $[\alpha(\omega)]_A$, denoted as $[\alpha_A]$

$$[\boldsymbol{\alpha}_{\mathbf{A}}] = [\boldsymbol{\alpha}_{\mathbf{A}}]. \tag{1}$$

Adding and subtracting the experimental receptance matrix $[\alpha_x]$ to the right hand side of (1) gives:

$$[\boldsymbol{\alpha}_{A}] = [\boldsymbol{\alpha}_{X}] + [\boldsymbol{\alpha}_{A}] - [\boldsymbol{\alpha}_{X}]. \tag{2}$$

Multiplying $[\alpha_{A}]$ of the right hand side by $[I] = [\alpha_{X}]^{-1}[\alpha_{X}]$

$$[\boldsymbol{\alpha}_{\mathrm{A}}] = [\boldsymbol{\alpha}_{\mathrm{X}}] + [\boldsymbol{\alpha}_{\mathrm{A}}][\boldsymbol{\alpha}_{\mathrm{X}}]^{-1}[\boldsymbol{\alpha}_{\mathrm{X}}] - [\boldsymbol{\alpha}_{\mathrm{X}}]$$
(3)

and factorising by $[\alpha_x]$ yields:

$$[\boldsymbol{\alpha}_{\mathbf{A}}] = [\boldsymbol{\alpha}_{\mathbf{X}}] + ([\boldsymbol{\alpha}_{\mathbf{A}}][\boldsymbol{\alpha}_{\mathbf{X}}]^{-1} - [\mathbf{I}])[\boldsymbol{\alpha}_{\mathbf{X}}]. \tag{4}$$

Replacing [I] by $[\alpha_A][\alpha_A]^{-1}$

$$[\boldsymbol{\alpha}_{\mathbf{A}}] = [\boldsymbol{\alpha}_{\mathbf{X}}] + ([\boldsymbol{\alpha}_{\mathbf{A}}][\boldsymbol{\alpha}_{\mathbf{X}}]^{-1} - [\boldsymbol{\alpha}_{\mathbf{A}}][\boldsymbol{\alpha}_{\mathbf{A}}]^{-1})[\boldsymbol{\alpha}_{\mathbf{X}}]$$
(5)

and factorising by $[\alpha_A]$ gives:

$$[\boldsymbol{\alpha}_{\mathbf{A}}] = [\boldsymbol{\alpha}_{\mathbf{X}}] + [\boldsymbol{\alpha}_{\mathbf{A}}]([\boldsymbol{\alpha}_{\mathbf{X}}]^{-1} - [\boldsymbol{\alpha}_{\mathbf{A}}]^{-1})[\boldsymbol{\alpha}_{\mathbf{X}}].$$
(6)

Or, in a more familiar form,

$$[\alpha_{A}] - [\alpha_{X}] = [\alpha_{A}][\Delta Z][\alpha_{X}]$$
⁽⁷⁾

where

$$[\Delta \mathbf{Z}] = [\mathbf{Z}_{\mathbf{X}}] - [\mathbf{Z}_{\mathbf{A}}] = [\Delta \mathbf{K}] - \omega^{2} [\Delta \mathbf{M}].$$
(8)

Theoretical Basis

FRF Sensitivities (MDOF)

$$\frac{\partial [\alpha(\omega)]}{\partial p} = \frac{\partial ([Z(\omega)]^{-1})}{\partial p} = -[Z(\omega)]^{-1} \frac{\partial [Z(\omega)]}{\partial p} [Z(\omega)]^{-1}$$

$$\frac{\partial [\alpha(\omega)]}{\partial p} = -[\alpha(\omega)] \frac{\partial [Z(\omega)]}{\partial p} [\alpha(\omega)]$$

$$\frac{\partial [\alpha(\omega)]}{\partial p} = -[\alpha(\omega)] \left(\frac{\partial [K]}{\partial p} + i\omega \frac{\partial [C]}{\partial p} - \omega^2 \frac{\partial [M]}{\partial p} \right) [\alpha(\omega)]$$