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@ Overview

= Introduction to Modal Testing

= Applications of Modal Testing

= Philosophy of Modal Testing

= Summary of Theory

= Summary of Measurement Methods

= Summary of Modal Analysis Processes
= Review of Test Procedures and Levels
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Introduction to Modal Testing

= Experimental Structural Dynamics

= To understand and to control the many vibration
phenomenon in practice
Structural integrity (Turbine blades- Suspension Bridges)
Performance ( malfunction, disturbance, discomfort)
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@ Introduction to Modal Testing (continued)

= Necessities for experimental
observations
= Nature and extend of vibration in operation
= Verifying theoretical models

= Material properties under dynamic loading
(damping capacity, friction,...)
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Introduction to Modal Testing (continued)

= Test types corresponding to objectives:

= Operational Force/Response measurements

Response measurement of PZL Mielec Skytruck Mode
Shapes (3.17 Hz, 1.62 %), (8.39 Hz, 1.93 %)
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Introduction to Modal Testing (continued)

= Modal Testing in a
controlled environment/
Resonance Testing/
Mechanical Impedance
Method

Testing a component or
a structure with the
objective of obtaining
mathematical model of
dynamical/vibration
behavior

Structural Analysis of
ULTRA Mirror
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@ Introduction to Modal Testing (continued)

= Milestones in the development:

= Kennedy and Pancu (1947)
Natural frequencies and damping of aircrafts

= Bishop and Gladwell (1962)
Theory of resonance testing

= ISMA (bi-annual since 1975)
= IMAC (annual since 1982)
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s Model Validation/Correlation:

= Producing major test modes validates the model
Natural frequencies
Mode shapes
Damping information are not available in FE models
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@ Applications of Modal Testing (continued)

= Model Updating

= Correlation of experimental/analytical
model

= Adjust/correct the analytical model

= Optimization procedures are used for
updating.
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Applications of Modal Testing (continued)

= Component Model f,r., EE%

Identification

= Substructure process S— @

= The component model — «<i=— = <
is incorporated into the == o,
structural assembly @

Engine
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Applications of Modal Testing (continued)

= Force Determination
= Knowledge of dynamic force is required
= Direct force measurement is not possible

= Measurement of response + Analytical Model
results the external force

[K]-@?[M)ixi={f]
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@ Philosophy of Modal Testing

= Integration of three components:

= Theory of vibration
= Accurate vibration measurement
= Realistic and detailed data analysis

= Examples:
= Quality and suitability of data for process

= EXxcitation type
= Understanding of forms and trends of plots

= Choice of curve fitting
= Averaging
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@Summary of Theory (SDOF

Freqyency Response Function MNyquist Plot
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Summary of Theory (MDOF)
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Summary of Theory

s Definition of FRF:

(@)= (<)o [M]-(0])

X;(w) &, ¢k
h_ ((()) —_J — jrv’kr .
3 fk(a)) Zla)
= Curve-fitting the s I
measured FRF: o,
= Modal Model is obtained @
= Spatial Model is obtained o
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Summary of Measurement
Methods

= Basic measurement system:

= Single point excitation
Spectmum Analyzer

= Impact Hammer
= —I:I:;]
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o g
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Summary of Modal Analysis

@ Processes

= Analysis of measured FRF data
= Appropriate type of model (SDOF,MDOF,...)
= Appropriate parameters for chosen model
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Review of Test Procedures

@ and Levels

= The procedure consists of:
= FRF measurement
= Curve-Fitting
= Construct the required model

= Different level of detalls and accuracy In
above procedure Is required depending
on the application.
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Review of Test Procedures
and Levels

= Levels according to Dynamic Testing Agency:

Natural Damplng Mode Shapes Usa_tble_for Out o_f range
Freq ratio validation residues

Updating

Only in few
points
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@ Text Books

= Ewins, D.J. , 2000, “Modal Testing; theory,
practice and application”, 2" edition,
Research studies press Ltd.

= McConnell, K.G., 1995, “Vibration testing;
theory and practice”, John Wiley & Sons.

= Maia, et. al. , 1997, “Theoretical and
Experimental Modal Analysis”, Research
studies press Ltd.
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@ Evaluation Scheme

= Home Works (20%)
= Mid-term Exam (20%)
= Course Project (30%)
= Final Exam (30%)
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@Theoretical Basis

= Analysis of weakly nonlinear structures

= Approximate analysis of nonlinear
structures

= Cubic stiffness nonlinearity
= Coulomb friction nonlinearity

s Other nonlinearities and other
descriptions
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Analysis of weakly nonlinear

@ structures

= The whole bases of modal testing assumes
linearity:
= Response linearly related to the excitation

= Response to simultaneous application of several
forces can be obtained by superposition of
responses to individual forces
= An introduction to characteristics of weakly
nonlinear systems is given to detect if any
nonlinearity Is involved during modal test.
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@Cubic stiffness nonlinearity

MX + cX + kx + k,x° = F sin(awt — @)
= X(t) = X sin(at)

= —ma° X sin(at) + caX cos(at) + kX sin(awt) + k, X °sin®(awt)

=F sin(wt — @)

= —mo* X sin(awt) + cwX cos(wt) +

KX sin(at) +

k,X B(ESin(a)t) —Esin(Sa)t)\
4 4 )

=F sin(wt — ¢)

Theoretical Basis IUST ,Modal Testing Lab ,Dr H Ahmadian



@Cubic stiffness nonlinearity

—mao* X sin(at) + coX cos(at) + kX sin(at) +
K, X 3(%sin(a)t) —%sin(?aa)t)j =
F sin(awt) cos(¢) — F cos(wt) sin(¢)

2 3. v3_
Mo X + kX +Zk3X = F cos(¢)

caoX =—F sin(¢)
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@Cubic stiffness nonlinearity

X| 1
F| 3 2 2
(—ma)2+k+ksxzj +(cw)
\ 4
3
kg =kt kX
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:¢bs Cubic stiffness nonlinearity
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Softening-stiffness effect
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Theoretical Basis
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s¢b3 Softening-stiffness effect

FC1
FC2
FBH
IMC
CcCCoC
TC
Shaker
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s¢b3 Softening-stiffness effect

highly loaded bolted
flange joint

2
1 (Drive Point)
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Softening-stiffness effect

Imaginary Part Experimental Acceleration FRF
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@Coulomb friction nonlinearity

£ (1) = cx(t) + C. ‘X(g‘

AE:4CFX :>Ceq: = p—

X 1

k—ma)2+i( 4Ce j
TTOX
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@Coulomb friction nonlinearity
X

1
- k—ma)2+i(ca)+ 4Ce j

TTOX
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Other nonlinearities and other

@ descriptions

= Backlash
= Bilinear Stiffness
= Microslip friction damping

= Quadratic (and other power law
damping)
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@ MODAL ANALYSIS THEORY

= Understanding of how the structural
parameters of mass, damping, and stiffness
relate to
= the impulse response function (time domain),

= the frequency response function (Fourier, or
frequency domain), and

= the transfer function (Laplace domain)

= for single and multiple degree of freedom
systems.
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@Theoretical Basis

s SDOF system
= Time Domain: Impulse Response Function
= Presentation of FRF
= Properties of FRF

s Undamped MDOF system

= MDOF system with proportional
damping
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@ SDOF System

= Three classes of system:

= Undamped
= Viscously-damped - 1
« Structurally Damped >
= Response Models:x( ) k —Ta)
Q)
H(w) = =3 —
F(w) K—mo® +Icw
1
 k—ma? +id
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Time Domain: Impulse
Response Function
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Frequency Domain:
@ Frequency Response Function

2 By H(e) - X(w)
[—Mm + fu+K]X(m)—F(f“J " Flo)
. . - /M
(@)= Mo+ jCo+K v, ( - J ( = J

—w-+ jJ|—= |0+ |—

."llfff- -"1‘4

/M A 47

H(w) = -

Go-aNGo-24) Gao-i) (Go-i)
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@Alternaﬂve Forms of FRF

= Receptance

= Inverse is “Dynamic
Stiffness”

= Mobility

= Inverse is “Dynamic
Impedance”

s Inertance

= Inverse is “Apparent
mass”

Theoretical Basis

X (o)
F (o)

V(o) i X (o)
F () F ()
A@) o X(@)
F () F(w)
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Graphical Display of FRF
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:¢b3 Graphical Display of FRF
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@Stiffness and Mass Lines
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@ Reciprocal Plots

= The “inverse” or Re(F(w)) k —me?
“reciprocal” plots _, ) X(®)

= Real part (F(a))) Cw
= Imaginary part X (o)
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@ Nyquist Plot

= For viscous damping the Mobillity plot is a

eceptance rASElitss Imertance
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= For structural damping the Receptance and
Inertance plots are circles.
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@m FRF Plot (SDOF)
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@Properties of SDOF FRF Plots

= Nyquist Mobility for viscose damping

|
Y(w) =
(@) k—-mo’+ico

co’ ok —mao?)

Re(Y) =

(K—mw?)? + (Cw)? Im(Y) =

(k—ma?)? + (cw)?
U :(Re(Y)—ziCj, V =Im(Y)

U2 +V2 = ((k—ma)z)2 +(Ca))2)2)2 :( 1 jz

402((k —mo?®)’ +(cw)’ 2
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@Properties of SDOF FRF Plots

= Nyquist Receptance for structural damping

1 (k-me?)-id
H(@) = k+id—mo®  (k-me’f +d?
U — (k—ma)z) V- d

(k—mc()2)2+d2 (k—mw2)2+d2

2 2
fre 3] (5
2d 2d

Theoretical Basis IUST ,Modal Testing Lab ,Dr H Ahmadian



@A Demo

= Basic Assumptions =
s /he structure 1s assumed to %ﬁ%
be linear Ra——

s The structure Is time invariant \Q =
s The structure obeys Maxwell s

oT

reciprocity e

= The structure is observable v
loose components, or degrees-of- o PO Beongz Suppon
freedom of motion that are not —
measured, are not completely
observable. |
Accelerom der
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@Theoretical Basis

= Undamped MDOF Systems

= MDOF Systems with Proportional
Damping

= MDOF Systems with General Structural
Damping

= General Force Vector

= Undamped Normal Mode
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@ Undamped MDOF Systems

= The equation of motion:

M fix@)j+[KJx@=1{f )]
= The modal model:  [@] T =diag(w?, &?,...,®7)
= The orthogonality:

@] M]e]=[1}[o] [K]e]=r]

= Forced response solution:

(K]~ [MIx Je'* = {F Je
X}=(K]- M) "F}= (X} = [a(@)]F}
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@ Undamped MDOF Systems

(continued)

= Response Model
(

[K]-w?[M])=[a(@)]"
o] (K]-0’[M]f@]=[o] | a(w) 0]
[F]-0?[1])= [@] [a(@)] @

J
o] ([r]—wz[l')[cb
«(@]=[olrT-o ] 0T

(o).




(continued)

@ Undamped MDOF Systems

= The receptance matrix is symmetric.

Single Input
jk F T~ ! Modal Constant/
k Modal Residue

N N /
Jk (C()) Z wfjr¢kr . Z

rla)
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@ Example:
g I S

[|\/|]:FL Jkg [K]{l'2 _O'S}MN/m

-08 1.2

3 R I S )

0.5 . 05 1.2e6 — w?
4e5—w? 2e6—w? 8ell—2.4eb6w’ +w*

Theoretical Basis IUST ,Modal Testing Lab ,Dr H Ahmadian

oy (@) =



Exam ple (continued).

Amplitude

— Zero

1 L 1 1
150 200 250 300 350
eeeeeeeee

05 05 _ 1.266 - @°
4e5—w? 2e6—w? 8ell-2.4e6w? + "t

AN

Poles
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@ Example (continued) .

Amplitude

eeeeeeeee

()05 05 Bed
e 45— > 2e6—w? 8ell-2.4e6w® + "
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MDOF Systems with
@ Proportional Damping

= A proportionally damped matrix is
diagonalized by normal modes of the
corresponding undamped system

[«

= Specia

Theoretical Basis

cases:
D

D

:T [D][(D]: diag(dl,dz,---,dN)

D]= K]
_:)_

=o|M |

|=plK]+slM]
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MDOF Systems with Structurally
@ Proportional Damping

= Response Model

(k]+i[D]- Z[M]) ()]

@] (K]+i[D]- @M o] =[0] [a(e)] @]
(o?@+int)]-o ) @] [e()] 0]
ia(a»j‘l=[@]‘T([w3<1+inf)]—wZ[li)[cbl‘l

(@)= @) @+in)]-o*[1]) [o]
( ) i ¢jr¢kr47 Real Residue
K\W) = 2 2
| 1@ (1+”7r )<_a)\ Complex Pole

Theoretical Basis IUST ,Modal Testing Lab ,Dr H Ahmadian



MDOF Systems with Viscously
@ Proportional Damping

= Response Model
([K]+ ia)[C]— a)z[l\/l ]): [0((&))]_1
o] (K]+ie[C]- o’ [M]fo] = [o] [a(@)] o]
(o [+iol2g,0]- 1) = [o] [a(e)] (@]
()] =[] (o7 |+i0[2¢,0,]- o[ ]f0]*

(@)= o))+ i0l2z.0.]- 1) [T

! ¢jr¢kr

ay (@)=
a ;a)rz ~0°+ 2L 0w
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MDOF Systems with General
@Structural Damping

= The equation of motion:

M Jix(0)j+ (K ]+i[DDix() =1 (©);

s The ort
[«

nogonality:

[[IM]o]=[1}[e][K+iD]o]=[r]

Complex Mode Shapes

= Forced response solution: Complex Eigen-values

(K]l
X3=(

Theoretical Basis

D
K

]~ 0?[MfX Je'* = {F '
[+i[D]- @ [M]) " {F }= {X } = [a(w)}F)
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@ Example:
— X2 /\/5%/\,

Az
K1 w - K3
M1 _‘A\Af /\/\f W3
AYAVAVAVAVLY
= 7] E6 e 3

Model 1
m, = 0.5kg, m, =1kg, m, =1.5kg
k;=1e3N/m, j=1,...,6

Undamped
(950 ] (0.464 -0.218 -1.318
I = 3352 |®]=/0536 -0.782 0.318
6698 10.635 0.493  0.142 |
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Example:

Proportional

[D]=0.05[K]
(950 ] (0.464 —0.218 —1.318]
' =(1+i0.05) 3352 |®]=|0536 -0.782 0.318
] 6698 | 10.635 0.493  0.142

Non — Proportional
d, =0.3k,d; =0.0,j=2,...6
(957(1+1i0.067)
I'= 3354(1+10.042) :

6690(1+i0.078)
-~ Almost real modes

(0.463(-5.5) 0.217(173’) 1.318(18L) | /

[®]=| 0.537(0.0°) 0.784(181°) 0.318(-6.7°)

0.636(1.0°) 0.492(-1.3°) 0.142(-3.1)
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Example:

Model 2
m, =1kg,m, = 0.95kg, m, =1.05kg
k;=1e3N/m, j=1,...,6

Undamped
(999 ] (0.577 -0.602 0.552 ]
= 3892 |®]=]0567 -0.215 -0.827
] 4124 | 10587 0.752  0.207 |
Proportional
[D]=0.05[K],
(999 ] (0.577 —0.602 0.552 ]
I'=(1+i0.05) 3892 |®]=|0567 -0.215 -0.827
] 4124 | 10587 0752 0.207 |
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Example:

Non — Pr oportional

d, =0.3k,,d; =0.0,j=2,...,6
(1006(1+i0.1)

I'= 3942(1+10.031) :
4067(1+1i0.019) |

(0.578(—4°) 0.851(162°) 0.685(40°) |
[®]=| 0.569(2°) 0.570(101°) 1.019(176°)
0.588(2°) 0.848(12°) 0.560(— 50)

\ Heavily complex modes
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MDOF Systems with General

@ Structural Damping

(

[K]+i[D]- o’ [M])=[a(e)]*

ot ine))- ol )= (o]

@ (K]+i[D]- 0?[M][@] = [@] [a(w)] "[@]

o]

()] =[0] (0t @+ind) |- 1]

a; (@) :Z

r=1 a)r2(1+|77r2)—a)2

®
fol’

(@)= [0)[wr@+in)]- (1) [o]

k ¢jr¢kr < Complex Residues

\ Complex Poles
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@General Force Vector

= In many situations
the system Is
excited at several
points.

ﬁ
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@ General Force Vector (continued)

= The response Is governed by:

([K +iD|-w?[M ]){X loiet — (F lgiet

= The solution: . .
(x}=Y ¥ {F 118 );
r=1 a)r2(1+ ”7r2) _a)Z
= All forces have the same frequency but
may vary in magnitude and phase.
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Ve CtO I (continued)

@General Force

= The response vector Is referred to:

= Forced Vibration Mode
= or Operating Deflection Shape (ODS)

= When the excitation frequency Is close

to the natural freo
= ODS reflects the s

= But not identical o
other modes.

Theoretical Basis

uency:
nape of nearby mode

ue to contributions of
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@ General Force Vector (continued)

= Damped system normal mode:

= By carefully tuning the force vector the
response can be controlled by a single
mode.

« The is attained if {¢} {F}, =0,

« Depending upon damping condition the
force vector entries may well be complex
(they have different phases)
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@Undamped Normal Mode

= Special Case of interest.

= Harmonic excitation of mono-phased forces
Same frequency
Same phase
Magnitudes may vary

= IS It possible to obtain mono-phased
response?

Theoretical Basis IUST ,Modal Testing Lab ,Dr H Ahmadian



(continued)

@Undamped Normal Mode

= The real force response amplitudes:

Ol =R b L
{X(t)}: {X‘ }ei(wt_g) ([K _HD]_(‘) [M ]){X}e - {F}E

= Real and imaginary parts:
(K]~ @?[M])cos 0+ [D]sin 6’){)2 }: {If}
(K] @*[M])sin 0+ [D]cos O X |= {0}

= The 2Md equation is an eigen-value problem;
its solutions leads to real {F|
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@ Undamped Normal Mode
(continued)

between all
90 degree t

(<]’
= Results
= Undamped

= At a frequency that the phase lag

forces and all responses is
nen

M ])sin 6+ [D]cos 0)iX = {0}

normal modes

=« Natural frequencies of undamped system

Theoretical Basis
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(continued)

@Undamped Normal Mode

= The base for multi-
shaker test procedures. [EUMEASEIEEEETE

= Modal Analysis of Large
Structures: Multiple
Exciter Systems By: M.
Phil. K. Zaveril
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Modal Testing

(Lecture 4)

Dr. Hamid Ahmadian

School of Mechanical Engineering
Iran University of Science and Technology
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@Theoretical Basis

= General Force Vector

= Undamped Normal Mode

= MDOF System with General Viscous
Damping

= Force Response Solution/ General
Viscous Damping
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@General Force Vector

= In many situations
the system Is
excited at several
points.

ﬁ
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-ﬁk General Force Vector

= Otherwise you end up
damaglng the structure”ll
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@ General Force Vector (continued)

= The response is governed by:

(K +iD]- @?[M])X Je'* = {F }e'
= All forces have the same frequency but
may vary in magnitude and phase.

= The solutiz;l(:}: i {¢}I {F }.{¢}r

r=1 a)rz(l_l_lﬁrz)_a)2
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Ve CtO I (continued)

@General Force

= The response vector Is referred to:

= Forced Vibration Mode
= or Operating Deflection Shape (ODS)

= When the excitation frequency Is close

to the natural freo
= ODS reflects the s

= But not identical o
other modes.

Theoretical Basis

uency:
nape of nearby mode

ue to contributions of
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@ General Force Vector (continued)

= Damped system normal mode:

= By carefully tuning the force vector the
response can be controlled by a single
mode.

« This is attained if {¢} {F}, = 0.

« Depending upon damping condition the
force vector entries may well be complex
(they have different phases)
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@Undamped Normal Mode

= Special Case of interest.

= Harmonic excitation of mono-phased forces
Same frequency
Same phase
Magnitudes may vary

= IS It possible to obtain mono-phased
response?
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Undamped Normal Mode

[ FINAL DATA
vty AVALYSE || AGQUBITON | | TEST

| [ PC-Pentium PC.Pentium [ 1
MOPAR  |e=—mlp vn MIODAL® Signal generator

oftware 7 :_
i Pr1r 1— [ ] Avetiter
a8 P K i

] I T R I A — . Escites |
| L Sekction matiix || |

Digitlizer || | Mitlsggg )| | P e ifoas |
wle ||| S . Arlifias |

| PRODERA Z

L-B10G 0301 ver Z1

1-st ANTISYMM. WING BENDING

1[Hz] = 8803

points of sxcitation: 1, 2, 266, 134, B4, 89, 270, 190

salmm]n 2535
oft)= 15

G- 512 channel
T 37 Shakers

}‘.i-;_i:* fT
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(continued)

@Undamped Normal Mode

= The real force response amplitudes:

{f(t)}:{lf}ew)t e L _ [ L
ix(ty] = (R e (€D MDRE =

= Real and imaginary parts:

(K]~ @?[M])cos 0+ [D]sin 6’){)2 }: {If}
(K] @*[M])sin 0+ [D]cos O X |= {0}
= The 2nd equation is an eigen-value problem;
its solutions leads to real {F|
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(continued)

@Undamped Normal Mode

= At a frequency that the phase lag
between all forces and all responses Is
90 degree then

([«]-a2[M])sin & +[D]cos )X |= {0}
= Results = (K]-w?[M X |={0}
= Undamped normal modes
=« Natural frequencies of undamped system
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(continued)

@Undamped Normal Mode

= The base for multi-
shaker test procedures. [EUMEASEIEEEETE

= Modal Analysis of Large
Structures: Multiple
Exciter Systems By:
M. Phil. K. Zaverl
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MDOF System with General
@Viseous Damping
EOM.= M [{x}+[CRx}+[K ix}=1{f}
()} ={Fje” = x)j={X "
(x}=(k]-o’M]+ie[c]) {F)

= Next the orthogonality properties of the
system in 2N space Is used for force response
solution.
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@ Force Response Solution

=[S WM S

Free Vib.jm M}{u}{K 0 }{u}:{o}

0 0 —-M
Eigen—solution:[s{l\i “(’)'H*; _‘;ﬂD{ur}:{o}

4C M K0 .
= U \ OU=I,U N _MU:dlag(sl,sz,---,SZN).
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@ Force Response Solution

\

X

=) =) =)
(F (F (F) .,

aw Uit w U oY Uryg Y
>: . \ J : \ / I - \ )*
; iw—S rzzll lw—S, iw—S

kia)X)

= The above simplification is due to the fact
that eigen-values and eigen-vectors occur in
complex conjugate pairs.

Theoretical Basis
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@ Force Response Solution

= Single point excitation:

N
ujrukr

ajk(w) :Z

= lo—S 1w-S5

x x
ujrukr
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Modal Analysis of Rotating
sqb Structures

= Non-symmetry in system
matrices

= Modes of undamped rotating
system
= Symmetric Stator
= Non-Symmetric Stator
= FRF’s of rotating system
= Out-of-balance excitation =~ #& ==
= Synchronous excitation R
= Non-Synchronous excitation
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Non-symmetry in System

@ Matrices

= The rotating structures are subject to
additional forces:
= Gyroscopic forces
= Rotor-stator rub forces
= Electrodynamic forces
= Unsteady aerodynamic forces
= Time varying fluid forces

= These forces can destroy the symmetry of the
system matrices.
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Non-rotating system
properties

B
= A rigid disc mounted on

the free end of a rigid
shaft of length L,

= The other end of Is
effectively pin-jointed.

(Io/LYi+k.L x =0

(Ig/L)y+k,L y =0
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Modes of Undamped Rotating

@ System
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@ Symmetric stator

kX = ky = k, <+—Support is symmetric

. It
X = Xe ,:> Simple harmonic motion
y . Yeia)t

b -
o230 o) o
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@ Mode Shapes

k a)I/L2 a)JQ/L k a)I/L a)JQ/L
a)JQ/L k a)I/L a)JQ/L k a)I/L

= @(9

eeeeeeeeeeeeeee

O



@ Non-symmetric Stator

K, =K,
W Q. _t

wi-{" R e

— I
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@ FRF of the Rotating Structure

External Damping
/.2 0 {x}+ c‘///Jfg/Lz{x}+{k (ﬂ{x}_ f,
0 I, /2|y] |-JQ, /17 C vy [0 klly] |f,]
kuwﬂ_{@afglﬁ+kmﬂ (w30, /112) }1

—(i30, 11%)«_ (k- 0?1,/ 12 +icw)
{ a,, (o) =a, (D Loss of Reciprocity
—

axy (C()) = _ayx (6()) )

Coupling Effect
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FRF of the Rotating Structure
@with External Damping
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@ Out-of-balance excitation

= Response analysis for the particular
case of excitation provided by out-of-
balance forces Is investigated.:
= When the force results from an out-of-

balance mass on the rotor, it is of a
synchronous nature

= When the force results from an out-of-
balance mass on a co/counter rotating
shaft, it iIs of a non-synchronous nature
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@Synchronous OOB Excitation

, [cos(Qt) (1
Fl=mrQ?] " =F, ] . le
sin(€Qt) —1
Symmetric — Stator :
fx A I 4 A A I
Ty e = FOOB<_iA>th
: k v . J

L2

lo@? — Q% (1-7))

10t
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Non-Synchronous OOB

@ Excitation

= Force is generated by another rotor at
different speed
Excitation = SQ

X A

L2
I, (@2 - P2 (B - 1))

s The essential results are the same as for
synchronous case.
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@Theoretical Basis

= Analysis using rotating frame

= Damping In rotating and stationary
frames

= Dynamic analysis of general rotor-stator
systems

= Linear Time Invariant Rotor-Stator
Systems

« LTI Rotor-Stator Viscous Damp System
= LTI Systems Eigen-Properties
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@Analysis using rotating frame

Yr I\

x| |cos(Qt) —sin(€t) || X,

{y} - Lin(Qt) cos(Qt) H yr}
X | | cos(Qxt) sin(Qt) || x
{yr} - {— sin(Qt) cos(Qt)Hy}
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@Analysis using rotating frame
g

-1
X, | | cos(Qt) sin(Qt) ][ x sin(Qt)  cos(Qt) |[x _fr] X aff,] X
y.| |-sin(Qt) cos(Qt) {y} { cos(Qt) —sm(Qt)Hy}_ 1{y}+ Z{y}’
X, | | cos(Qt)  sin(Qt) sin(QQt)  cos(Qt) || x o cos(Q2t)  sin(Qt) ([ x
V. _{—sin(ﬂt) cos(Qt)H } { cos(Qt) —sm(Qt)Hy}_ {—sin(Qt) cos(Qt)Hy}
).(. 2
[l 20} ol
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@Analysis using rotating frame

Equation of Motion in Stationary Coordinates
I,/ 0 |[X 0 o, /2| [x] |k, 0 f[x] (O
+ + =3
0 I /Y] -3 /2 o |(ly] |0 Kk ly] |O
0, =) + (K2, 12) =12, 12 @, =@} + (7, 12) +72,12
Equation of Motion in Rotating Coordinates

1, /20 AN 0 —2Q 1, /2 +JQ /12 |[%, ]
0 I,/ ||Y,) [2Q,1,/5-3Q,/1° 0 Y

N — Q2 L2+ Q2% +k e +k,s° cs(k, —k,) x| [0
cs(k, —k,) ~Q P+ IO +k e +ks% ||y, ) |0)
0)1:\/(()54—(7/{22/2)2—7{22/24—@2 a)2:\/a)02+(7g)z/2)2+7£22/2_gz

Note: Eigenvectors remain unchanged
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@Analysis using rotating frame

Fo| | cos(Qt) sin(Qt) || F,

Foo| | =sin(Qt) cos(Qt)||F, |

:Or Example: Response harmonies not
. _ present in the excitation
Fxr} B { cos(Qt) sm(Qt)} {Fo

< =
F —sin(Qt) cos(Qt) || O

\ yr
_ F, |cos(@ —Q)t+ cos(w + Q)t
2 | sin(w-Q)t+sin(w+Q)t

cos(wt
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Internal Damping In rotating
and stationary frames

Equation of Motion in Rotating Coordinates

I,/ 0 |[X . C, —2Q 1, /5 +JQ /12 |[ %
0 I, /LY, [2Q,1,/12-3Q [1° C, Y,

N — Q%+ JQ2 1P +k 0 X.| [0
0 —Q% 2+ 2 +k ||y, ] |0

Equation of Motion in Stationary Coordinates

,/L> 0 X[.| o NOWIK J ke Qc |[x] |0
0 I, /2||y) |-J, /1 C, vy |-9.¢  k, |ly 0|
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Internal/External Damping In

@ 2DOF System

1,/ 0 |[X] | c.+c, IO, /LP|[%
o1t , < ¢
0 L, /L |Y) |-JQ, /L5 c.+c |lY,

k Q CI rX\ rO\

+ T r=< 5
__ QZC' ky | y; \O)
At super critical speeds the real parts of

eigen-values may become positive,
I.e. unstable system
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Dynamic Analysis of General
@ Rotor-Stator Systems

= The rotating machines and their modal
testing is much more complex
= Non-symmetric bearing support
= Fixed/Rotating observation frame
= Non-axisymmetric rotors
= Internal/External damping

= These lead to:
= Time-varying modal properties
= Response harmonies not present in the excitation

= Instabilites (negative modal damping)
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Dynamic Analysis of General
@ Rotor-Stator Systems

= Equation of motion of rotating systems
are prone:

= to lose the symmetry

= t0 generate complex eigen-values/vectors
from velocity/displacement related non-
symmetry

= to Include time varying coefficients as
appose to conventional Linear Time
Invariant (LTI) systems
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Dynamic Analysis of General
Rotor-Stator Systems

System Type Stationary Coord. Rotating Coord.
R-symm;S-symm LTI LTI
R-symm;S-nonsymm LTI L(t)
R-nonsymm;S-symm L(t) LTI
R-nonsymm;S-nonsymm L(t) L(t)

LTI: Linear Time Invariant

L(t): Linear Time Dependent
Theoretical Basis IUST ,Modal Testing Lab ,Dr H Ahmadian



Linear Time Invariant Rotor-

@ Stator Systems

i+ ([C]+[c(])x}+
([K] [ [+[E@x}=1f (1))
M |[c][K][D]= Symm.
G()][E(Q)|= Skew — symm.

= Solution of equations will follow different
routs depending upon the specific features.
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LTI Rotor-Stator Systems

@(Viscous Damping Only)
[Afu}+[BJu}= {0}

C+G(Q) M |
[A]= = The system matrices

| —-M 0] are non-symmetric
B]- K+E(Q) 0 | = Complex eigenvals

B 0 M | = Two eigenvect sets:

. ) = RH; mode shapes

{u}:< X e = LH; normal excitation
X shapes
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LTI Rotor-Stator Systems
@(Viscous Damping Only)

= Symmetric Rotor/ Non-symmetric Support

Forwards Whirl

Backwards Whirl ™
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FRF of LTI Rotor-Stator
Systems

o (a))] = Ve 1(2 i) "V [

o’




@LTI Systems Eigen-Properties

= Skew-symmetry in damping Matrix

1 3 -1
M —_ ,K — |
[]_ 1_[] 2R
i = 4 o
IC]=AC 0 05 +(1- AC) 0-5
-05 0 -05 1
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AC A X, X,

0.0 -0.75+1.85i 1 -1.00
0.1 -0.68+1.88i 1 -1.05+0.08i
0.3 -0.52+1.94i 1 -1.08+0.28i
0.5 -0.37+1.99i 1 -1.03+0.49i
0.7 -0.23+2.04i 1 -0.90+0.63i
0.9 -0.07+2.08i 1 -0.76+0.71i
1.0 2.11i 1 -0.69+0.73i
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@LTI Systems Eigen-Properties

s Skew-symmetry in stiffness Matrix

1

[M]=_ 1_,[C]=0,
0 1 3 -1
[K]zAK__l O_+(1—AK)__1 3
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AK A X, X,

0.0 2.00i 1 -1.00
0.1 1.90i 1 -1.12
0.3 1.65i 1 -1.58
0.5 1.23i 1 Infinity
0.7 0.32+1.00i 1 1.58i
0.9 0.57+0.79i 1 1.12i
1.0 0.70+0.70i 1 i
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@Complex Measured Modes

‘h.
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Complex Measured Modes

Predator Aircraft Ground Vibration Test
4 Shakers used at 8 Locations
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Display of Mode Complexity

Mods 1. 1560Hz & 308 % Mode 2. 172 1HzE 355 % Mods 3. 2055Hz & GO0 %
T1 Mon-zero siemems 71 Mion-rero sl ements F1 Morizero ekemems
Meanange = 75 deyeer Mienn ade = 155 dermes Wean angle = 227 degpess
990 BN 455 EL R R E R G0N T 215
o0
/ b
180 0 180
i -~ "“-\.
‘. P e | —
70 20 200
Mode 4- XHMSHzE L% Moide 5. 2ELEHZE BRI Y Ml E- 2EAHZE AEY
71 Mon-zero slemems 71 Man-zero S enenks 71 Mor-zaen elemems
Wesnags = T degrees Neanangle = 25.0degees Kean angle = 428 degrees
Tahe %S TS L 11 W 11 P e 5 e
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Analytical Real Modes

G DOBEES SORAE PR OO o I BSOS TR - Froe el ol Fls Fimpenic
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Extracting real modes from
@Complex measured modes

= H Ahmadian, GML Gladwell - Proceedings of
the 13th International Modal Analysis (1995):

= The optimum real mode is the one with maximum
correlation with the complex measured one:

e 8TE
4.7 6.
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@Extracting real modes

= Normalizing the complex measured
mode shape:

i@l = 1.

= The problem is rewritten as:

maz (¢l Ppcprd.), subjectto |@,||=1.
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@Extracting real modes

Write ¢, = ¢_ +i¢,, then
bt =U +iV,

where Symmetric
— T T < T T
U= ¢g¢l+¢1¢1t V= ¢1¢n "'¢n¢,'

Rank 2 matrices

Skew-symmetric
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@Extracting real modes

= Since /is skew symmetric,

TV, =0

= Therefore the problem is equivalent to:

maz ($TU®,), Subjectto ||¢,|| = 1.
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&ls Extracting real modes
maz (¢TU¢@,), Subjectto |@,|| = 1.

But U is an n x n positive semi-definite ma-
trix with rank 2. Therefore it has (n — 2)
zero eigenvalues and 2 positive ones A;, and
A2. The ¢, which maximizes (2) is the eigen-
vector corresponding to the larger of the two
positive eigenvalues.
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@Extraeting real modes

We now show that the real vector ¢, ob-
tained as the eigenvector of U is precisely the:
same as the real part of the complex mode ro-.
tated so that its real part is maximized. Tox
find this latter mode we must choose 8 so that:

maz|| Real(¢e")|"
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Extracting real modes

| Real($.e®)* = ||, cosb + b, sin 6],

— AT T . T .
= ¢, P, cos’ 0+, ¢, sin’ 6+2¢" @ sin b cos b,

_ ¢£¢R + ¢:{¢'! +
N 2

{¢£¢R o ¢}‘¢I
2

so that the function is maximized or mini-
mized when

cos 20 _ ¢£¢R - ¢f @r
5iI|. 29 2¢TRF I
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@Extracting real modes

To verify that the real part of the rotated
mode, ¢p cos 8 + ¢, sin 0, is an eigenvector of

U, i.e.

(PrPR + 197 )(Prcos b + P, sin 0) =
M @grcosd + ¢;sinb),
we note that this is true provided that:

(PrPrcosb + pRp,;sind) = Acosé,
(p1Pprcosd + T Prsind) = Asin 6.
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&bz Extracting real modes

2heby) cos 26 = ($hbr — #7 b;) sin 26,

(¢R;)(cos® 8 — sin? ) =
(pRPr — b1 @) sin 0 cos b,
(¢E g cos 8 + PpRep; sin 6) sin 6 =

(X, cos 8 + $T ¢, sin 8) cos 6.

This last equation implies that there is a con-
stant )\ satisfying equations (6), (7).
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@Follow—ups:

= E. Foltete, J. Piranda, “Transforming Complex
Eigenmodes into Real Ones Based on an
Appropriation Technique”, Journal of Vibration
and Acoustics, JANUARY 2001, Vol. 123

s S.D. GARVEY, J.E.T. PENNY, “THE
RELATIONSHIP BETWEEN THE REAL AND
IMAGINARY PARTS OF COMPLEX MODES”,
Journal of Sound and Vibration
1998,212(1),75-83
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@Theoretical Basis

= Non-sinusoidal Vibration and FRF
Properties:
= Periodic Vibration
= Transient Vibration

= Random Vibration
Violation of Dirichlet’s conditions

Autocorrelation and PSD functions
H1 and H2

= Incomplete Response Models
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Non-sinusoidal Vibration and

@ FRF Properties

= With the FRF data, response of a MDOF
system to a set of harmonic loads:

X e = [a(w) [F o4

The same frequency

Different amplitudes and phases

= We shall now turn our attention to a range of
other excitation/response situvations.
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@ Periodic Vibration

= EXxcitation is not simply sinusoidal but retain
periodicity.

= The easiest way of computing the response
IS by means of Fourier Series,

fk (t) = Z I:nkeia)nt Wy =——

X;(1) = Za,k(w) e’
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@ Periodic Vibration

= To derive FRF from periodic vibration
signals:

= Determine the Fourier Series components
of the input force and the relevant
response

= Both series contain components at the
same set of discrete frequencies

= The FRF can be defined at the same set of
frequency points by computing the ratio of
response to input components.
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@ Transient Vibration

= Analysis via Fourier Transform

F(w) = B (t)e "“dt
27 *

X(w)=H(o)F (o)

X(t) = TH (0)F(@)e'dw
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@ Transient Vibration
= Response via time domain (superposition)
X(t)= [h(t—7)f(z)dz

Let f(t):&(O):F(w):zi
JC

Then — X(t) = — [ H(@)e“do = h(t)
27 *
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@ Transient Vibration

s 10 derive FRF from transient vibration
signals:

= Calculation of the Fourier Transforms of
both excitation and response signals

= Computing the ratio of both signals at the
same frequency

= In practice it Is common to compute a
DFT of the signals.

Theoretical Basis IUST ,Modal Testing Lab ,Dr H Ahmadian



@ Random Vibration

= Neither excitation nor response signal
can be subject to a valid Fourier
Transform:
= Violation of Dirichlet Conditions

Finite number of isolated min and max
Finite number of points of finite discontinuity

= Here we assume the random signals to
be ergodic
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@ Random Vibration
f (t) — Time Signal

Autocorrelation Function

)

R, (7) = f f (1) f (t+7)dt

—00
Power Spectral Density

1 oo e |
Si (@) = 5 ijf (r)e""dz
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Time Signal

Autocorrelation

Power Spectral Density

Theoretical Basis

Random Vibration

f(t)‘

(a) ‘W%ﬁ%‘t

Rel0) A

(b) AV/\V/ \VA o~ r.

S¢elwn) A

NPVANEA N

Tars
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@ Random Vibration

1

0.5

0

Sinusoidal Signal
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-1
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500
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Power Spectral Density '@
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0

Theoretical Basis
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@ Random Vibration

0.5 T T T T T T

Random Signal 0

0.5 I I \ I I \ \ I I
0] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.8 1
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@ Random Vibration

Noisy Signal

Autocorrelation

= b | b | ]
-] 1 = =
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@ Random Vibration

s The autocorrelation function is real and even:

—+00

R, (7) = j f(t) f(t+7)dt

= J]?Of (U —Z') f (U)dU = Rff (_T)

u=t+r

= The Auto/Power Spectral Density function Is
real and even.
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@ Random Vibration

= Cross Correlation / Spectral Densities

R, (7) = Tx(t) ft+r)dt S, ()= %TRXf (r)e dr

—00

s Cross Correlation functions are real but
not always even.

= Cross Spectral Densities are complex
functions.
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@ Random Vibration

Time Domain Frequency Domain

R, (7) = Tf ) f(t+7)dt =S, (@) = F (0)F (@)
R (7) = fo X(t) f (t+7)dt = S.. (@) = X (@) F (@)
R (7) = f X(Ox(t+7)dt = S, (@) = X (@) X (o)
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@ Random Vibration

= To derive FRF from random vibration signals:

() = (@)X (@) _ S, (@)
1 X (@)F(w) S, ()
HZ(C()) — F*(a))X(a)) _ Sfx(a))

F (@)F(0) Sq(@)
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@ Complete/ Incomplete Models

= |t IS not possible to measure the
response at all DOF or all modes of
structure (N by N)

= Different incomplete models:

= Reduced size (from N to n) by deleting
some DOFs

= Number of modes are a reduced as well
(from N to m, usually m<n)
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@ Incomplete Response Models

m<N

ajk(a))zz r

2 2 :

2
r

— 3
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s¢: Incomplete Response Models

MMMMM
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@Theoretical Basis

= Sensitivity of Models

= Modal Sensitivity
SDOF eigen sensitivity
MDOF system natural frequency sensitivity
MDOF system mode shape sensitivity

« FRF Sensitivity
SDOF FRF sensitivity
MDOF FRF sensitivity
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@Sensitivity of Models

= The sensitivity analysis are required:
= to help locate errors in models in updating
= t0 guide design optimization procedures
= they are used in the course of curve fitting

= A short summery on deducing
sensitivities from experimental and
analytical models is given.
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@ Modal Sensitivities (SDOF)
K

a)O: -
m

0w, 1 [k 1 w,

om 2\ m? 2 m
0w, 1 1o,

ok 2Jmk 2 k
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@Modal Sensitivities (MDOF)
(K]-w? M1y, )= o}

([K 0! M), } =

Theoretical Basis



@ Eigenvalue Sensitivity (MDOF)

Multiplyby {4, |

(0,7 (K- 02 [M) 2

results > — =
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Eigenvector Sensitivity

@ (MDOF)

Starting  from:

(K]-a?[M ])@{¢r}+[@[*<]—a“’f Mo Mj{m:{o},

op

[l
M=
-
<
——

and taking %
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Eigenvector Sensitivity
(MDOF)
| 21

N

(K]-of M]3 7, % - 07 @[“”jw:{o}

= ( g  op op
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Eigenvector Sensitivity

@ (MDOF)

= (0F - 02, + {@}T[M—wEMj{m

op op
T 8[K] 28[|\/|]
) _{¢}(8p_wr8p){¢}
T (? - a?)
) (a[K]—wf a[M]j{qﬁ |
_ 0N op op
2 er) ™



Updating, Redesign,

MiReanayss

00?0} 0
r 3 %, O 0
Aa)f aplz pzz p32
2 a)Z a0)2 aa)z -
Aw, Ap,
. ap, p, oPs b
e : : ; S
(g} | olad) olagl olad) ||,

Ad, op, op, op;
{-} 0{Ag, ] 0lAg,} 0iAg,)

op. P, I
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Updating, Redesign,

@ Reanalysis

= The change in parameters must be very
small for accurate analysis

= When the change in parameters is not
small:
= Higher order sensitivity analysis
= Iterative linear sensitivity analysis
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@ FRF Sensitivities (SDOF)

(0) =
K+1awC—wm
oa(w) —1
ok (k+iwc—a’mf
oa(w) —lw
¢ (k+iec—w™mf
oa(w) °

om  (k+ioc—w’m)
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FRF Sensitivities (MDOF)
Z(e)]=|K]+iw[C]-a*[M]

= ([A]+[B])" = [A]" - ([Al+[B])"[B]AI"

take[A]=  [2(o)]., [A+B]= [z(0)],

then = [Z(a)];" =[Z(0)], -[Z(0)} (Z(2)], -[Z(2)],)"[Z (@)l
(@), ~|el@)], = -lalo)][aZ(0)]a(w)],
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@ FRF Sensitivities (MDOF)

Theoretical Basis



Starting with the analytical receptance matrix [a(e)],. denoted as [a,]

[2a] = [2a]. (1)

Adding and subtracting the experimental receptance matrix [o] to the right hand side of
(1) gives:

[oa] = [oex] + [ota] — [ox]. (2)

Multiplying [e,] of the right hand side by [1] = [etx]"[otx]
[oa] = [ors] + [ota]fotx]  otx] — [otx] (3)
and factorising by [ax] vields:
(o] = [ox] + ([ora][ox] ™" — [I])[o2]. (4)
Replacing [I] by [aa][oa] ™
[ota] = [ot] + ([l o] ™" — [oradlonad ™) o] (3)
and factorising by [o,] gives:
[oa] = [otx] + [ora] (foex] ™" — [ota] ™" )foex]. (6)
Or, in a more familiar form,
[a] — [otx] = [ ][AZ][otx] (7
where

[AZ] = [Zx] — [Z4] = [AK] — & [AM]. (8)
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ola(@)]_ allz(w)])

_ - [z(0)]* oz(e) Z(o0)]”

op op p

op B op
Ola(@) oK], . ac] ,oM]
- ——[a(a))(—Ha)——a) o]
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