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Real-time ocular artifact
suppression using recurrent neural
network for electro-encephalogram

based brain–computer interface
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Abstract—The paper presents an adaptive noise canceller (ANC) filter using an artificial
neural network for real-time removal of electro-oculogram (EOG) interference from
electro-encephalogram (EEG) signals. Conventional ANC filters are based on linear
models of interference. Such linear models provide poorer prediction for biomedical
signals. In this work, a recurrent neural network was employed for modelling the
interference signals. The eye movement and eye blink artifacts were recorded by the
placing of an electrode on the forehead above the left eye and an electrode on the left
temple. The reference signal was then generated by the data collected from the
forehead electrode being added to data recorded from the temple electrode. The refer-
ence signal was also contaminated by the EEG. To reduce the EEG interference, the
reference signal was first low-pass filtered by a moving averaged filter and then applied
to the ANC. Matlab Simulink was used for real-time data acquisition, filtering and ocular
artifact suppression. Simulation results show the validity and effectiveness of the
technique with different signal-to-noise ratios (SNRs) of the primary signal. On average,
a significant improvement in SNR up to 27 dB was achieved with the recurrent neural
network. The results from real data demonstrate that the proposed scheme removes
ocular artifacts from contaminated EEG signals and is suitable for real-time and
short-time EEG recordings.

Keywords—EEG, Adaptive noise canceller, Ocular artifact, Recurrent neural network,
Brain–computer interface
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1 Introduction

ELECTRO-ENCEPHALOGRAM (EEG) signals are contaminated
by noise from sources such as eye blink and eye movement.
The traditional method of eye blink suppression is removal
of the segment of EEG data in which eye blinks occur. Eye
blinks are usually detected by means of data recorded
from electrodes placed above and below the subject’s left
eye. An eye blink is said to have occurred if the signal ampli-
tude exceeds a given threshold. All EEG segments in which
eye blinks occur are then excluded. In addition, in some
event-related potential experiments, eye blinks are super-
imposed on evoked-response components. In this case, a
common approach is to reject all EEG epochs containing
a signal amplitude larger than some selected value. These
schemes are rigid and do not lend themselves to adaptation.
Moreover, a great number of data are lost.
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Several methods based on regression in the time domain
(GRATTON et al., 1983) or frequency domain (WOESTENBURG

et al., 1983) have been proposed for removing eye blink
artifacts. However, all these methods require off-line analysis
that is not suitable for real-time applications. Principle com-
ponent analysis (PCA) has also been proposed as a method
for removing eye artifacts from multichannel EEG (BERG

and SCHERG, 1991; 1994; LINS et al., 1993). However, PCA
cannot completely separate eye artifacts from EEG signals,
especially when they have comparable amplitude (JUNG

et al., 2000).
Recently, a more effective method has been introduced

for removing a wide variety of artifacts from multichannel
EEG signals, based on blind source separation by independent
component analysis (ICA) (MAKEIG et al., 1996; VIGARIO,
1997). However, the method requires visual inspection of
ICA components and manual classification of the interference
components. This can be time-consuming and is not desirable
for real-time artifact suppression. In particular, these tech-
niques require multichannel EEG and cannot be applied to a
single-channel recording.

To overcome these problems and to shorten the experimental
session, the customary practice is to invoke the use of an
adaptive noise canceller (ANC). The ANC, which is a special
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approach to adaptive filtering, has been widely used in interfer-
ence cancellation (THAKOR and YI-SHENG, 1991; LAGUNA

et al., 1992). HE et al. (2004) employed an ANC with two
separate linear adaptive filters for ocular artifact cancellation.
A pair of electrodes were placed above and below the eye to
record the vertical electro-oculogram (EOG), and another
pair of electrodes were placed at the left and right outer
canthi to record the horizontal EOG. The recorded vertical
EOG and horizontal EOG were used as two separate reference
inputs. Each reference was first processed by an adaptive filter
and then subtracted from the recorded EEG.

STROBACH et al. (1994) proposed an ANC for event-
synchronous cancellation of ECG interference in biomedical
signals using the QRS synchronously repeated estimated
average waveform of the interference as an artificial reference
signal. The method is applied to the cancellation of the heart
interference in magneto-encephalogram (MEG) signals and
to isolation of the ventricular extrasystoles in magnetocardio-
gram. DENG et al. (2000) developed an event-synchronous
interference canceller for cancellation of electrocardiographic
interference in diaphragmatic electromyographic signals. The
trigger points created by the QRS detector are used for QRS
synchronous segmentation of the corrupted MEG signals.
Then, the resulting temporal segments are averaged to estimate
the artificial reference signal. However, owing to the random
nature of eye blinking or movement, this scheme cannot be
applied to ocular artifact removal from the EEG.

All of the methods discussed above are based on linear
adaptive filtering. Linear adaptive filters offer an important
tool for the modelling and prediction of stochastic signals.
However, linear models are generally inadequate for modelling
systems with even mild non-linearities. Owing to the inherently
non-linear nature of biological systems, the development
of a non-linear adaptive filter (NAF) would be desirable for the
adaptive processing of biomedical signals. Until now, a variety
of NAFs based on Volterra series expansion (PARSA et al.,
1998; MATHEWS, 1991; RAUF and AHMED, 1997) and feedfor-
ward neural networks (JAMES et al., 1997; GRIEVE et al., 2000)
have been developed and employed in various applications.

PARSA et al. (1998) applied both linear and non-linear adap-
tive noise cancellers to the problem of stimulus artifact (SA)
reduction in non-cortical somatosensory evoked potentials
(SEPs), where the ensemble-averaged SEPþ SA composite
waveform is utilised as the primary input. It was shown that
the non-linear ANC, which was based on a truncated second-
order Voltera series expansion, provided significantly better
stimulus artifact cancellation than the linear ANC.

JAMES et al. (1997) used the technique of multirefe-
rence adaptive noise cancelling (MRANC) to enhance non-
stationarities in the EEG, with the adaptation implemented
by means of a feedforward neural network. It was shown that
the non-linear MRANC gave an improvement in performance
compared with a linear MRANC.

GRIEVE et al. (2000) developed a neural network-based
ANC for estimating somatosensory evoked potentials and
cancelling the stimulus artifact. The primary and reference
inputs used to train the network were generated by averaging
of the training sets. The network was trained with a segment
of recorded data that did not contain the evoked signal. The
final result was obtained by averaging the results of filtering
each record in the test set. However, the proposed scheme
can only be employed when the stimulus artifact does not
overlap the evoked potentials. Moreover, real-time artifact
suppression was not considered in this work.

SADASIVAN and DUTT (1997) adopted a non-linear ANC,
which was based on a second-order Volterra function, for
reducing the EOG in electro-encephalography measurements.
However, real-time minimisation of the ocular artifacts was
Medical & Biological Engineering & Computing 2005, Vol. 43
not considered in this work. A non-linear ANC without a
reference signal was successfully used to estimate brainstem
auditory evoked potentials (ARABI and ERFANIAN, 1999).
The non-linear ANC was based on a feedforward neural
network. It was observed that a significant improvement in
waveform estimation could be achieved by the neural
network adaptive filters, compared with the ensemble-
averaging and time-varying linear adaptive filter.

In our previous work (ERFANIAN and MAHMOUDI, 2002),
a feedforward neural network was utilised for real-time
removal of eye blink interference from EEG signals. The
reference signal was collected by an electrode placed on the
forehead above the eye. The reference signal was first low-
pass filtered by a moving average filter and then applied to
the ANC. The results showed that single-electrode recording
provides satisfactory reference input correlated with the noise
in the primary signal.

Our aim in this paper was to make use of the advantages
of artificial neural networks in developing an adaptive noise
canceller for real-time ocular artifact suppression. In this
approach, we consider recurrent neural networks (RNNs).
Recurrent networks have advantages over feedforward neural
networks in much the same way that autoregressive moving
average models have advantages over autoregressive models
(CONNOR et al., 1994). RNNs address the temporal relationship
of their inputs by maintaining an internal state and perform
dynamic mapping. Owing to this fact, we employed a recurrent
neural network to predict the ocular interference and compare
its performance with that of a feedforward neural network in
cancelling eye blinks.

2 Methods

2.1 Principle of ANC

The concept of adaptive noise cancelling was proposed
by WIDROW and STREANS (1985). The idea is to subtract out a
filtered version of noise, known to be correlated with the noise
corrupting the desired signal. The filter is continuously modified
by some algorithm to optimise some performance criterion on
the estimated signal. A typical structure of an adaptive noise
canceller is shown in Fig. 1. The ANC has two inputs: the
primary input and the reference input. The primary input x is
the desired signal of interest s buried in noise v0, as shown by

x(n) ¼ s(n)þ v0(n) (1)

The reference input contains noise v1, which is correlated with
the noise component of the primary signal but uncorrelated
with the desired signal; that is,

E[s(n)v1(n� k)] ¼ 0 for all k (2)

It is assumed that the signal and noise in the primary input are
uncorrelated; that is,

E[s(n)v0(n)] ¼ 0 for all k (3)

The ANC is based on adaptive filtering of the reference signal to
produce an estimate of the noise component of the primary
signal; that is,

v̂0(n) ¼
XM�1

k¼0

ŵk(n)v1(n� k) (4)

where ŵ0(n), ŵ1(n) . . . , ŵM�1(n) are the adjustable tap weights
of the adaptive filter, and v1(n), v1(n� 1), . . . ,v1(n�M þ 1)
are the tap inputs. The output of the adaptive filter is then
subtracted from the primary signal to produce an estimate of
the desired signal.
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In adaptive noise cancelling, the quality of the reference
signal is the most critical factor. It should be uncorrelated with
the desired signals. As the level of the crosstalk between the
reference signal and desired signal increases, the performance
of the ANC begins to degrade. Ensemble and moving window
averages were formerly used to construct the reference input
with good results (CHAN et al., 1995). Recently, a Gaussian
radial basis function neural network was used as a prefilter to
provide a proper reference signal for adaptive filtering of
evoked potentials (QUI et al., 2002). In this work, we used a
moving window average to preprocess the recorded reference
signal to provide an effective reference input for the ANC.

2.2 Recurrent neural network

The recurrent neural network, which involves dynamics
elements in the form of a feedback loop, has a profound
impact on the learning capability of the network and on its
performance (GILES et al., 1994; TSOI and BACK, 1994).
Moreover, the feedback loops that feed back the lagged
outputs of the neurons to the inputs of the neurons enable the
network to perform dynamic mapping and learning tasks that
extend over time.

The architecture of the recurrent neural network takes many
different forms (TSOI and BACK, 1994). In this work, we used a
recurrent multilayer perceptron with a single hidden layer, as
illustrated in Fig. 2. The network contained recurrent con-
nections from the hidden neurons to a layer consisting of unit
delays. The output of the unit-delay layer was fed to the
input layer. We could then describe the dynamic behaviour
of the network with the following equations:

y(t þ 1) ¼
Xq

i¼1

cigi(t)

gi(t) ¼ f
Xp

j¼1

w jix(t � jþ 1)þ
Xq

k¼1

vkigk(t � 1)

 !
(5)
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Fig. 2 Structure of recurrent single-layer perceptron
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Fig. 1 Adaptive noise canceller with reference signal
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where f ( � , � ) is a non-linear activation function characterising
the hidden units, gi(t) is the response of the ith hidden unit, and
ci is its connecting weight to the output unit. The w and v
are the connecting weights of the input units and unit-delay
units to the hidden units, respectively. The hidden layer is
non-linear, but the output layer is linear. We estimated the
parameters c, w and v using the standard backpropagation
learning algorithm (HAYKIN, 1999).

In this paper, we employed the RNN for adaptive noise
cancelling with the reference signal for the suppression of
ocular artifacts. The primary input was the recorded EEG
signal contaminated by the EOG, and the reference signal was
the EOG. The RNN was used for adaptive filtering of the refer-
ence signal to obtain a better model of the noise component of
the primary input.

3 Simulation study

3.1 Simulation data

A simulation study was carried out to test the capabilities of
the neural adaptive noise canceller for ocular artifact suppres-
sion. The NAF was implemented here by means of a recurrent
single layer perceptron (RSLP) network with four input nodes,
five hidden units with hyperbolic tangent activation function,
and one linear output node.

An autoregressive process driven by Gaussian white noise
simulated the ongoing EEG (YU et al., 1994) as follows:

s(t) ¼ 1:5084s(t � 1)� 0:1587s(t � 2)

� 0:3109s(t � 3)� 0:0510s(t � 4)þ w(t) (6)

where w(t) is a white-noise sequence with Gaussian distri-
bution. The artifacts were simulated by an exponentially
damped sinusoid with randomly varied amplitudes and
shapes satisfying a uniform distribution. The jth artifact is
thus simulated as

n j(k) ¼ Ka je
�k=t j sin (2pk=N) for k ¼ 0 . . . N � 1 (7)

where N is the length of the artifact waveform and is set to 128
samples. The parameter aj is the amplitude of the jth artifact,
and tj is a parameter determining the shape. K is an amplitude
scaling constant. To simulate the variations in amplitude and
shape of the artifacts, both parameters were set to new
random values at the onset of each artifact. The new values
of aj and tj were randomly chosen from a Gaussian distribution
with (m ¼ 1, s2 ¼ 0:1) and (m ¼ 250, s2 ¼ 50), respectively.
The artifacts were generated exponentially distributed over
time, with the occurrence rate of 0.5 per unit time. One unit
of time corresponds to 1024 samples of discrete time series.
The generated artifacts were scaled and added to simulated
EEG to provide the primary signal with a specific value of
SNR.

The relative mean-squared error (MSE) was used to quantify
the efficacy of the NAF in cancelling the ocular artifacts.
The MSE is defined as

MSE ¼

PL�1
k¼0 [s(k)� ŝ(k)]2PL�1

k¼0 s2(k)
(8)

where ŝ is the output of the NAF, and s is the signal to be esti-
mated. The performance index is computed in each unit of
time.
edical & Biological Engineering & Computing 2005, Vol. 43
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3.2 Results

The performance of the NANC in cancelling the artifacts
was compared with different SNRs at the primary and the refer-
ence signals, different numbers of hidden units, and different
numbers of tap inputs. In all cases, the power of the simulated
artifact was adjusted to provide the desired SNR at the primary
input signal. Shown in Figs. 3a–c are portions of simulated
EEG, artifacts and the resulting primary signal, respectively.
In this case, the SNR of the primary signal was set at
26 dB, and the reference signal was not contaminated by the
EEG. Figs 3d and e demonstrate portions of the estimated
artifact-free EEG after artifact cancellation using a standard
single-layer perceptron (SSLP) with eight hidden units and a
standard two-layer perceptron (SMLP) with eight units in the
first hidden layer and four units in the second hidden layer,
respectively. The estimated artifact-free EEG using the recur-
rent single layer perceptron (RSLP) with eight hidden units is
shown in Fig. 3f. In all cases, the hidden units were non-
linear with hyperbolic activation function, but the output unit
was linear.

The performance of the networks was examined with differ-
ent values of the learning rate, and the optimum value was
selected for each network. Fig. 4 shows the error curves of
the networks for different values of the learning rate. It was
found that the optimum learning rate parameter was about
0.0013 for the SSLP, 0.0005 for the SMLP and 0.0005 for
the RSLP. It was seen that, as the learning rate became
larger, the network learned faster initially, but the larger
learning rate gave larger ripples as learning proceeded.

We also evaluated the performance of the NANCs in artifact
cancelling with different orders of inputs. Fig. 5 shows the error
curves of the networks for different orders. It was observed
that the performance of the NANC with input ½r(t),
r(t � 1), r(t � 2), r(t � 3)� was better than that with input ½r(t),
r(t � 1)� or ½r(t), r(t � 1), r(t � 2), r(t � 3), r(t � 4), r(t � 5)�.

g. 3 (a) Simulated EEG. (b) Simulated artifacts. (c) Simulated
primary signal (SNR ¼ 26 dB). (.....) Estimated artifact-
free EEG using (d) SSLP with 8 hidden units, (e) SMLP
with 8 units in first hidden layer and 4 units in second
hidden layer, and (f) RSLP with 8 hidden units
Medical & Biological Engineering & Computing 2005, Vol. 43
Moreover, it was found that increasing the number of hidden units
did not result in a significant improvement in performance.

Fig. 6 shows the same information as in Fig. 3 when the
SNR of the primary signal is set at 28 dB. It was observed
that, in spite of the random variations in amplitude, shape
and occurrence of artifacts, and different SNRs, a perfect
cancellation was achieved using the RSLP.

Fig. 7 shows the error curves for different SNRs of the
primary signal during adaptive noise cancelling using RSLP,
SSLP and SMLP. An overall SNR improvement of 16, 7 and
27 dB is achieved by using SSLP, SMLP and RSLP, res-
pectively. From the above, it is found that RSLP was suitable
for artifact suppression under different SNRs. Moreover, the
performance of the recurrent neural network was much better
than that of the feedforward network. Even with four inputs

Fig. 4 Error curves of (a) SSLP, (b) SMLP and (c) RSLP for
different values of learning rate. (a) Learning rate: (——)
0.0001; (-†-†-†) 0.001; (.....) 0.01. (b) Learning rate:
(——) 0.0001; (-†-†-†) 0.0005; (.....) 0.005. (c) Learning
rate: (——) 0.0005; (-†-†-†) 0.001; (.....) 0.003
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and only eight hidden units (48 parameters in total), the RSLP
performed better than the feedforward network with two
hidden layers, eight units in the first hidden layer and four
units in the second hidden layer (84 parameters in total).

3.3 Effect of EEG interference in reference input

As mentioned above, to establish a perfect cancelling of the
interference, the quality of the reference signal is the most
important factor. However, the reference signal is also con-
taminated by the EEG signals. Here, a moving window
average of order 64 was used to reduce the EEG interference.
To investigate the performance of the NANC in cancelling
the artifacts during EEG interference, the simulated EEG was
added to the simulated artifacts to provide the reference
signals. Figs 8a–d show the portion of simulated EEG,

Fig. 5 Error curves of (a) SSLP, (b) SMLP and (c) RSLP for input
order (——) [r(t), r(t 2 1)], (-†-†-†) [r(t), r(t 2 1),
r(t 2 2), r(t 2 3)] and (.....) [r(t), r(t 2 1), r(t 2 2), r(t 2 3),
r(t 2 4), r(t 2 5)]
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artifacts and resulting primary and reference signals, when the
SNR of the primary and reference signal was set at 26 dB and
10 dB, respectively. The estimated artifact-free EEG signal
using RSLP with and without the moving averaged filter is
shown Figs 8e and f, respectively. It was observed that prefilter-
ing the reference signal significantly improved the performance
of the NANC. It is clear that the NANC with prefiltering of the
reference signal can best suppress the artifacts. The MSE of the
NANC without prefilter was much larger than that of the
NANC with prefilter.

3.4 Effect of non-linear EOG-to-EEG transfer

All the results described above were based on the assump-
tion that the EOG-to-EEG transfer was linear. In this Section,
we assume that the EOG-to-EEG transfer was non-linear.
The simulated artifacts were added to simulated EEG in a
non-linear way to provide the simulated primary signal as

x(t) ¼ EEG(t)þ aj(EOG(t)) (9)

where a is the scaling factor, and j is the non-linear transfer,
which was chosen to be of the form (SADASIVAN and DUTT

(1997))

j(EOG(t)) ¼ EOG(t)þ EOG2(t)þ EOG3(t) (10)

Figs 9a–d show the portion of simulated EEG, EOG, j(EOG)
and the resulting primary signal, respectively. The simulated
j(EOG) was scaled and added to the simulated EEG to
produce an SNR of 26 dB. Fig. 9e shows the estimated
artifact-free EEG using RSLP with eight hidden units. We
can clearly observe that the non-linear filter would be able to
identify the non-linear EOG-to-EEG channel in a short conver-
gence time and effectively remove the artifacts.

Fig. 6 (a) Simulated EEG. (b) Simulated artifacts. (c) Simulated
primary signal (SNR ¼ 28 dB). (.....) Estimated artifact-
free EEG using (d) SSLP with 8 hidden units, (e) SMLP
with 8 units in first hidden layer and 4 units in second
hidden layer and (f) RSLP with 8 hidden units
edical & Biological Engineering & Computing 2005, Vol. 43



4 Real data acquisition and real-time processing

4.1 Hardware and software

The overall system comprised an IBM-compatible 1.7 GHz
Pentium IV personal computer, eight-channel EEG amplifier
and a high-performance data acquisition card�. To implement
such a real-time BCI on a PC, appropriate computer software
was required. The software had to handle on-line data acqui-
sition and real-time processing. In our case, we used Matlab
Simulink (THE MATHWORKS, 1998–2000), Real-Time Work-
shop (THE MATHWORKS, 1999–2000), and Real-Time
Windows Target under Windows 98 for on-line data acquisition,
filtering and ocular artifact suppression. Simulink provides an
interactive environment for modelling, simulating, controlling

Fig. 7 Error curves of (a) SSLP, (b) SMLP and (c) RSLP for different
SNRs of primary signal. SNR: (——) 2 6 dB; (-†-†-†) 2 8 dB;
(.....) 2 10 dB

�PCL-818HG, Advantech
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and processing as a block diagram using predefined blocks.
Real-Time Workshop provides the tools for converting
Simulink models into C code and then compiling the code into
a real-time executable using a C compiler. The executable
code is loaded into memory, and the Real-Time Windows
target kernel runs the code in real time.

4.2 Real-time ocular artifact suppression

The EEG data of normal subjects were recorded at a
sampling rate of 256 Hz by Ag/AgCl scalp electrodes. The

Fig. 8 (a) Simulated EEG. (b) Simulated artifacts. (c) Simulated
primary signal (SNR ¼ 26dB). (d) Simulated reference
signal (SNR ¼ 10 dB). (.....) Estimated artifact-free EEG
using RSLP with 8 hidden units, (e) with and (f) without
moving averaged filter

Fig. 9 (a) Simulated EEG. (b) Simulated reference signal (EOG).
(c) Simulated j(EOG). (d) Simulated primary signal
(SNR ¼ 26dB). (e) (.....) Estimated artifact-free EEG using
RSLP with 8 hidden units
301



Fig. 10 Matlab Simulink block diagram of (a) NANC, (b) recurrent neural network and (c) moving averaged filter
eye blink and eye movement artifacts were recorded by placing
an electrode on the forehead above the left brow line and an
electrode on the left temple. All recording channels were refer-
enced to the right earlobe. The signals were continuously col-
lected and processed, while the subject was free to blink and to
move his eyes. The measured values were low-pass filtered
(cutoff frequency ¼ 40 Hz). The NANC described above was
used for real-time ocular artifact suppression. The primary
signal was the measured EEG data from position F3. The refer-
ence signal was the data recorded from the forehead electrode
when the eye did not move, and the eye blink artifacts were
going to be suppressed. During the removal of eye blink and
eye movement artifacts, the reference signal was generated
by the adding of the data recorded from the forehead electrode
to the data recorded from the temple electrode. The output of
the neural network was an estimate of the noise in the
primary signal, and the output of the NANC was an estimate
of the artifact-free EEG. The NANC was here implemented
by means of a recurrent neural network with four input
nodes, eight hidden units and one output node. The learn-
ing rate was chosen as 0.01. It should be noted that the
302 M
leaning process never stops and continuously adapts the
free parameters of the network to variations in the incoming
signals.

Fig. 10a shows the Matlab Simulink block diagram of the
NANC for real-time ocular artifact suppression. The neural
network and the moving window average filter were imple-
mented by the Simulink blocks (Figs 10b and c). These
blocks belong to the fundamental Matlab digital signal pro-
cessor library and are coded in real-time workshop format to
support real-time operation.

4.3 Results

Fig. 11a shows eye blink artifact suppression for a 10 s
portion of the recorded EEG signals at frontal site F3 during
the real-time mode of operation. It was observed that the eye
blink artifacts were significantly suppressed by the NANC.
Fig. 11b shows the same information as in Fig. 11a for a
different portion of the recorded EEG. Although the structure
of the eye blink artifacts is totally different, owing to a time-
varying property, the proposed NANC can be used to remove
edical & Biological Engineering & Computing 2005, Vol. 43



Fig. 11 (a) Real-time eye blink artifact suppression for 10 s portion of recorded EEG signals at frontal site F3. Reference signal is data recorded from
forehead electrode. (b) Same information as in (a) for different portion of recorded EEG. (c) Real-time eye movement and eye blink artifact
suppression for 10 s portion of recorded EEG signals, while reference signal is generated by adding data recorded from forehead electrode to
data recorded from temple electrode
ocular artifacts from even strongly contaminated EEG record-
ings. Removal of eye movement artifacts is shown in Fig. 11c.
In this case, the reference signal was generated by adding the
data collected from the forehead electrode to the data recorded
from the temple electrode. It was clearly observed that the
eye movement artifacts were perfectly removed, as well as
the eye blink artifacts.

Fig. 12 shows eye blink artifact suppression for different
EEG channels during off-line operation using the NANC. The
NANC was also here implemented by means of a recurrent
neural network with four input nodes, eight hidden units and
one output node. The learning rate was chosen as 0.005.
During off-line operation, the network was considered to have
converged when the absolute rate of change in the mean-
squared error per epoch was sufficiently small. During each
epoch, the whole recorded signal was applied to the NANC. It
Medical & Biological Engineering & Computing 2005, Vol. 43
was observed that the ocular artifacts were perfectly removed,
even with short-time recordings in EEG experimental sessions.
Moreover, the baseline wander caused by the eye movements
has been removed. It is important to note that the NANC does
not distort the EEG when there is no artifact.

5 Conclusions

In this paper, we have presented a non-linear adaptive noise
canceller using a recurrent neural network for real-time removal
of the EOG interference from EEG signals. The results show
that the ocular artifacts are perfectly removed even with a
single-reference signal. The reference signal is generated by
adding the data collected from the forehead electrode to the
data recorded from the temple electrode. This is unlike the con-
ventional eye blink and eye movement artifact recording, which
303



Fig. 12 Eye blink suppression for different EEG channels during off-line operation: (a) recorded EEG signals; (b) artifact-free EEG signals
uses two pairs of electrodes: one pair of electrodes are placed
above and below the eye to record the vertical EOG, and
another pair are placed at the left and right outer canthi to
record horizontal EOG.

In addition to the ability of real-time suppression, the pro-
posed scheme would be able to remove ocular artifacts from
contaminated EEG signals during short experimental sessions.
This is another factor of concern during the training phase of
BCI. Moreover, it is found that eye blink variability does not
affect the performance of the NANC.

In this paper, we used a recurrent neural network for model-
ling the noise component in the primary signal and compared its
performance with that of a feedforward neural network. Recur-
rent neural networks (RNNs) are biologically more plausible
and computationally more powerful than feedforward net-
works, and their use is very appropriate for modelling non-
linear dynamic systems. The RNN used in this paper consists
of an input source node, a single hidden layer and one linear
output node. This simple structure makes RLSP suitable for
real-time applications.
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