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Contamination of electroencephalographic (EEG) recordings with different kinds of artifacts is the main
obstacle to the analysis of EEG data. Independent component analysis (ICA) is now a widely accepted tool
for detection of artifacts in EEG data. One major challenge to artifact removal using ICA is the identification
of the artifactual components. Although several strategies were proposed for automatically detecting the
artifactual component during past several years, there is still little consensus on the criteria for automatic
lectroencephalogram
cular artifact

ndependent component analysis
avelet analysis

rejection of undesired components. In this paper we present a new identification procedure based on
an efficient combination of independent component analysis (ICA), mutual information, and wavelet
analysis for fully automatic ocular artifact suppression. The method does not require any offline training
or determining the threshold levels for different markers. The results show that the proposed method
could significantly enhance the ocular artifact detection and suppression. The results on 3105 4-s EEG
epochs indicate that the artifact components can be identified with an accuracy of 97.8%, a sensitivity of

98.6
96.9%, and a specificity of

. Introduction

Contamination of electroencephalographic (EEG) recordings
ith different kinds of artifacts such as eye movements and blinks

s the main obstacle to the analysis of EEG data. These types of
rtifact may interfere with the detection and analysis of events of
nterest and hinder the interpretation of EEG recordings. The tra-
itional method of the eye-blink suppression is the removal of the
egment of EEG data in which eye blinks occur. Eye blinks are usu-
lly detected by means of data recorded from electrodes placed
bove and below the subject’s eye. An eye blink is said to have
ccurred if the signal amplitude exceeds a given threshold. All EEG
egments in which eye blinks occur are then excluded. In addition,
n some event-related potential experiments, eye blinks super-
mpose on evoked-response components. In this case, a common
pproach is to reject all EEG epochs containing the signal ampli-
ude larger than some selected value. These schemes are rigid and
Please cite this article in press as: Ghandeharion H, Erfanian A. A fully aut
statistics: Improved performance by wavelet analysis. Med Eng Phys (2010

o not lend themselves to adaptation. Moreover, a portion of data
ill be lost.

Several methods based on regression in the time domain [1]
r frequency domain [2] have been proposed for removing ocu-
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lar artifacts. This approach estimates the influence of EOG on the
signals recorded by scalp electrodes and removes it from the EEG
recordings. However, regression methods require a good regres-
sion channel (e.g., EOG). Due to the bidirectional mixture of ocular
and cerebral activities, regression methods inevitably involve sub-
tracting relevant EEG data contained in the EOG channel(s) from
the EEG channels.

The so-called blind source separation (BSS) techniques open a
new approach to ocular artifact reduction. BSS methods are based
on a linear decomposition of the EEG and EOG recordings into
source components. These component-based methods segregate
artifactual activities into separate sources, hence, the reconstruc-
tion of EEG recordings without these sources leads to artifact
reduction. The first proposed component-based procedure was
Principle Component Analysis (PCA) [3]. However, PCA cannot com-
pletely separate eye artifacts from EEG signals, especially when
they have comparable amplitude [4–6]. Berg and Scherg [7] pro-
posed a method based on the combination of PCA, multiple source
models of EEG and EOG, and an artifact-aligned averaging method
to correct eye artifacts. However, the accuracy of the method
depends on availability of an accurate model of brain activity, head
model and independent estimate of the spatial distribution of eye
omatic ocular artifact suppression from EEG data using higher order
), doi:10.1016/j.medengphy.2010.04.010

activity throughout the head.
To overcome the limitations and constraints of regression and

PCA, a more effective component-based method has been intro-
duced for removing a wide variety of artifacts from multichannel
EEG recordings based on independent component analysis (ICA)

d.
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5,6,8–13]. Jung et al. [8] showed that ICA can effectively detect,
eparate, and remove a wide variety of artifacts (including ocular
rtifacts, muscle artifacts, and line noise power) from contaminated
EG recordings.

The acquired results in [14] supported the use of regression-
ased and PCA-based ocular artifact correction and suggested a
eed for further studies examining possible spectral distortion from
astICA-based correction procedures [15]. Recently, Romero et al.
16] objectively and quantitatively evaluated the performance of
aried ocular filtering methods. They applied regression and differ-
nt BSS techniques to different montages of simulated EEG and EOG
ecordings and finally concluded the effectiveness of BSS-based
lgorithms for eye movement removal even when EOG recordings
ere not available or when data length was short. Delorme et al.

12] reported that ICA preprocessing led to a 10–20% increase in
etection performance for all ICA algorithms tested.

Despite all the practically verified virtues of ICA, the method
equires visual inspection of extracted components and man-
al classification of the interference components. This can be
ime-consuming and is not desirable for real-time artifact sup-
ression. To overcome the shortcomings of the visual inspection
pproach, many automatic methods have been proposed and
eported [16–25]. James and Gibson [17] used constrained ICA
cICA) to extract a single independent component (IC) that is con-
trained to be similar to some reference signal. The method was
mployed for eye-blink suppression in multichannel recordings of
EG and MEG. To obtain a reference signal, a simple threshold is
pplied to Fp1 and a positive going pulse is recorded when the EEG
t Fp1 exceeds that threshold. Barbati et al. [18] used kurtosis and
ntropy of ICs and the correlation coefficients between the power
pectrum density (PSD) of the estimated ICs and the PSD of EOG to
utomatically identify artifactual ICs in magnetoencephalographic
ignals.

Another procedure for automated correction of ocular artifacts
n EEG records using blind source separation (BSS) and correlation

etrics was proposed by Joyce et al. [19]. They used the corre-
ation between the BSS components and vertical and horizontal
OG signals and the power of BSS components in the low fre-
uency band to identify the eye-blink components. Moreover, BSS
pplied to the data with reversing the sign of vertical and horizon-
al EOG signals. Comparing the resulted components with those
btained by applying the BSS to the original data, the components
hat inverted were eliminated. In order to remove artifacts from

agnetoencephalogram (MEG) background activity, Escudero et al.
25] used the power in the low frequency band of each IC to decide
hich ICs accounted for ocular artifacts. Li et al. [20] proposed

he template matching method for selecting the eye-blink artifact
omponent. They used a fixed pattern of the scalp topography as
template and selected the component whose scalp topography
as most similar to the template under certain distance measure.
owever, this method requires obtaining the topographic template
e obtained beforehand and the visual inspection of the topogra-
hy of the ICs. The relative power spectrum and scalp topographies
f the independent components were also used for automatic
rtifact identification [16]. An independent component (IC) was
dentified as artifactual component when the relative power in
he delta frequency and the projection strength of the IC onto the
OG electrodes exceeded a predefined threshold and the projection
trengths of the IC onto EEG electrodes have values higher than a
hreshold and follow a gradient depending on the artifact.

LeVan et al. [21] devised an ICA-based automated system to
Please cite this article in press as: Ghandeharion H, Erfanian A. A fully aut
statistics: Improved performance by wavelet analysis. Med Eng Phys (2010

emove artifacts from ictal scalp EEG, using a Bayesian classifier.
he classifier was trained using numerous statistical, spectral, and
patial features. Recently, Okada et al. [24] presented an ICA-based
ethod for removing eye-blink artifacts in event-related MEG mea-

urements. The similarity between normalized MEG measurements
 PRESS
neering & Physics xxx (2010) xxx–xxx

for five successive sampling points centered at EOG peak latency
and the topographic pattern of each IC was used as a marker for
identifying the artifactual components. The IC with the largest sim-
ilarity was selected as the eye-blink component. The EOG peak
latency was determined by searching the maximum EOG for the
duration where EOG exceeded a certain threshold potential.

However, all these automated methods share an inherent weak-
ness, in that they are based on predefining an appropriate threshold
level for identifying the artifactual components. The threshold is
empirically selected and is non-adaptive and context sensitive. This
paper presents a new method which is based on wavelet analy-
sis, higher order statistics, and mutual information for automatic
detection of artifactual sources in ICA without requiring to train or
to predefine any fixed threshold levels.

2. Methods

2.1. Independent component analysis

ICA is a statistical technique in which observed random data
are linearly transformed into components that are maximally inde-
pendent from each other. Let us assume that an array of sensors
provides a vector of N observed signals

x(k) = [x1(k), x2(k), . . . , xN(k)]T (1)

that are linear mixtures of N unobservable sources,

s(k) = [s1(k), s2(k), . . . , sN(k)]T (2)

The sources are real-valued, zero-mean non-Gaussian distributed,
and mutually statistically independent for each sample value k. The
aim in ICA is to estimate the separating matrix, W, such that

s = Wx (3)

The matrix W defining the transformation is obtained so that
the mutual information of the transformed components Si, i.e.,
independent components, is minimized. Mutual information is a
measure of the dependence between random variables. Several
algorithms have been developed to minimize the mutual infor-
mation and to find such a linear transformation. Hyvärinen [15]
proposed a fast algorithm called FastICA which maximized the
nongussianity. Nongussianity is here measured by the approx-
imation of negentropy. Bell and Sejnowski [26] proposed an
unsupervised learning algorithm using information maximization
(Infomax) in a single-layer feedforward neural network with non-
linear outputs for blind source separation. The algorithm is effective
in separating sources that have super-Gaussian distributions. How-
ever, the algorithm fails to separate sources that have negative
kurtosis (e.g., uniform distribution). Lee et al. [27] extended the
ability of the Infomax algorithm to perform blind source separation
on linear mixtures of sources having either sub- or super-Gaussian
distributions. Cardoso [28] used fourth-order cumulants to mea-
sure independence and JADE (Joint Approximate Diagonalization of
Eigenmatrices) algorithm to find the separating matrix optimizing
this measure. JADE is referred to a process of jointly diagonalizing
a maximal set of cumulant matrices. A survey and compilation of
the progress in this field is contained in [29].

2.2. ICA-based artifact suppression

One of the certain assumptions in ICA is the independency of
components. Due to the fact that the nature of the ocular artifacts
sources is different from that of the EEG activity, the ICA method
omatic ocular artifact suppression from EEG data using higher order
), doi:10.1016/j.medengphy.2010.04.010

can be used to separate the ocular artifacts and EEG brain activ-
ity into separate components. To suppress the artifacts from EEG
signals using ICA, the artifactual components should be identified
first. Then, the artifact-free brain signals are obtained by pro-
jecting selected non-artifactual components back onto the scalp,

dx.doi.org/10.1016/j.medengphy.2010.04.010
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ig. 1. A typical recorded 4-s EEG epoch (a) and corresponding independent sou
aveforms of VEOG (c), source 2 (d), HEOG (e), source 1 (f), and source 3 (g).
Please cite this article in press as: Ghandeharion H, Erfanian A. A fully aut
statistics: Improved performance by wavelet analysis. Med Eng Phys (2010

0 = W−1s0, where s0 is the matrix, s, of independent components
ith rows representing artifactual components set to zero. To date
ifferent ICA algorithms were used to detect artifacts in EEG data
nd it was reported that Infomax ICA outperformed both FastICA
nd second-order blind inference [12,22].
xtracted by extended Infomax algorithm (b). The coarse (left) and detail (right)
omatic ocular artifact suppression from EEG data using higher order
), doi:10.1016/j.medengphy.2010.04.010

2.3. Wavelet-based artifactual component detection

The wavelet transform is well-suited to analyze the irregular
structures and transient phenomena in signals. By decomposing
the signals into elementary building blocks that are localized both

dx.doi.org/10.1016/j.medengphy.2010.04.010
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Table 1
Kurtosis values of a typical 4-s recorded EOG (Fig. 1), kurtosis values of the independent components of a typical 4-s recorded EEG (Fig. 1), and kurtosis values of their coarse
and detail waveforms.

Signal A1 A2 A3 A4 A5 D1 D2 D3 D4 D5

VEOG 11.44 11.45 11.71 11.97 13.53 9.41 0.713 1.47 3.88 10.82 13.61
HEOG 16.67 16.69 17.03 17.59 16.43 12.34 0.06 2.81 0.37 3.33 12.95
S1 18.71 18.73 19.08 19.67 18.33 13.05 0.49 2.44 0.98 5.59 21.43
S2 13.4 13.4 13.8 13.95 16.12 13.72 0.44 1.91 1.12 10.78 15.98
S3 48.44 48.64 53.3 73.55 54.8 40.17 9.16 17.04 20.17 31.02 25.97
S4 0.35 0.40 0.10 −0.03 −0.20 0.52 1.35 4.92 1.30 0.83 0.16
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S5 −0.42 −0.41 −0.43 −0.23 −0.07
S6 −0.16 −0.15 0.01 0.44 0.82
S7 0.65 0.66 0.93 0.33 0.18
S8 0.01 0.013 0.19 0.32 0.91

n space and frequency, the wavelet transform can characterize
he local regularity of the signal [30]. It is important to under-
tand the usefulness of applying wavelet analysis to distinguish
OG waves from the EEG activity. The wavelet analysis results in
set of wavelet coefficients which indicate how close the signal

s to a particular basis function. Therefore, by choosing an appro-
riate basis function and applying the wavelet transform to the

ndependent components, it is possible to enhance the detection of
he artifactual components.

Wavelet transform has been already used for enhancing artifact
uppression in EEG signals [31]. The method was based on ICA while
avelet transform was applied to the independent components

nd all wavelet coefficients above a certain predefined threshold
ere set to zero. Then, inverse wavelet transform of the coef-
cients was used to obtain independent components consisting
eural sources only. In contrast, the current study applies wavelet
ransform to the independent components to enhance detection of
rtifactual components without using thresholding scheme.

The proposed method is based on the statistical properties of the
ndependent components and their wavelet transform. We applied
ifferent measures for identifying the artifactual components: the
urtosis of the coarse and detail waveforms of the ICs, the correla-
ion coefficient between ICs and the reference signals (rV and rH),
he relative strength of each component at the vertical and hori-
ontal EOG (cV and cH), and the mutual information between ICs
nd the reference signals.

.3.1. Mutual information measure
The most current automatic methods for ocular artifact sup-

ression are based on the correlation to reveal the similarity
etween the reference signals and the independent components
12,14,16,18,19]. In this work, we used mutual information [29]
s a measure of the amount of information that the indepen-
ent components contain about the EOG. Mutual information (MI)

s a non-parametric measure of relevance between two random
ariables. Shannon’s information theory provides a suitable for-
alism for quantifying this concept [29]. Shannon’s definition of
I between two signals x and y is given as the Kullback–Leibler dis-

ance between the joint pdf f(x, y) and the product of the marginal
dfs f(x) and f(y), i.e.,

(x, y) =
∫ −∞

−∞

∫ −∞

−∞
f (x, y) log

(
f (x, y)

f (x)f (y)

)
dx dy (4)

If the mutual information between two random variables is
arge, it means two variables are closely related. Indeed, MI is zero
f and only if the two random variables are strictly independent.
Please cite this article in press as: Ghandeharion H, Erfanian A. A fully aut
statistics: Improved performance by wavelet analysis. Med Eng Phys (2010

One is to implement MI, its estimation poses a great difficulty
s it requires the knowledge on the underlying probability density
unctions (pdfs) of the data and the integration on these pdfs. One
f the most popular ways to estimate mutual information for low-
imensional data space is to use histograms as a pdf estimator.
0.18 0.12 1.47 1.19 0.99 0.25
−0.40 0.45 1.73 0.64 1.22 0.39

0.60 0.10 1.07 0.52 1.76 0.32
3.76 0.58 1.62 0.99 0.41 0.18

Histogram estimators can deliver satisfactory results under low-
dimensional data spaces. Trappenberg et al. [32] have compared
a number of MI estimation algorithms including a standard his-
togram method, an adaptive partitioning histogram method, and
MI estimation based on the Gram–Charlier polynomial expansion.
They have demonstrated the superior performance by the adaptive
partitioning histogram method [33] in their examples.

In this work, the adaptive partitioning histogram method was
used to estimate the mutual information between ICs and refer-
ence signals and ICs with maximum value were marked for possible
rejection.

2.3.2. Projection strength measure
The elements of each row of the inverse matrix W−1 give the

strength of a component at each of the scalp sensors. To compute
the relative strength of the jth source at the vertical and horizontal
EOG, the jth element of the corresponding row vector of A = W−1 is
divided by its Frobenius norm as follows:

cij = aij√∑
ka2

ik

× 100 (5)

where cij is the strength percentage of source j to the ith scalp sensor
and aij is the element of the mixing matrix A.

In this work, the strength of each component to the reference
signals was computed and the ICs with maximum value were
marked for possible rejection.

2.3.3. Correlation measure
The correlation criterion which uses second-order statistics,

compare the linear relationship between the recorded EOG signals
and the independent components. The similarity of independent
components with the vertical and horizontal EOG is quantified by
means of correlation coefficient computed as follows:

rxs = Cov(x, s)
�x�s

(6)

where x is the recorded reference signal, s is the independent com-
ponent, � is the standard deviation, and Cov is the covariance of
the two variables x and s. The correlation coefficients between
each component and reference signals were computed and ICs with
maximum value were marked.

2.3.4. Kurtosis measure
Kurtosis is a fourth-order cumulant of a random variable. The

kurtosis of s, denoted by kurt(s), is defined by

kurt(s) = E(s4) − 3[E(s2)]
2

(7)
omatic ocular artifact suppression from EEG data using higher order
), doi:10.1016/j.medengphy.2010.04.010

where E is the statistical expectation. Kurtosis is zero for a Gaussian
random variable, positive for super-Gaussian, and negative for sub-
Gaussian [29]. Thus, if the kurtosis is highly positive, the activity
distribution is highly peaked.

dx.doi.org/10.1016/j.medengphy.2010.04.010
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Fig. 2. Multiple comparison between kurtosis values of several pairs of variables: (a) between VEOG signal and its coarse and detail waveforms; (b) between VEOG and detail
and coarse waveforms of VEOG, between VEOG and artifactual component associated with VEOG, between VEOG and detail and coarse waveforms of artifact component;
(c) and (d) the same information as in (a) and (b) for HEOG.

Table 2
Average values of kurtosis of the reference signals and the coarse and detail waveforms of the references.

Reference channel A1 A2 A3 A4 A5 D1 D2 D3 D4 D5

Contaminated epoch
VEOG 6.50 6.53 6.98 7.79 7.78 6.14 2.26 1.83 1.34 4.25 8.31
HEOG 5.20 5.24 5.87 7.09 7.76 6.29 0.77 1.76 1.18 2.60 6.14

Non-contaminated epoch
VEOG 0.27 0.29 0.43 0.52 0.61 0.58 0.89 1.72 1.02 1.11 1.12
HEOG 1.64 1.67 2.08 2.96 3.56 3.76 0.80 1.88 0.93 1.14 2.72

Table 3
Mutual information between independent components of a typical recorded 4-s epoch (Fig. 1) and the reference signals.

IC S1 S2 S3 S4 S5 S6 S7 S8

MIVEOG 0.084 0.916 0.006 0.0027 0.011 0.047 0.0059 0.0037
MIHEOG 0.847 0.181 0.0395 0.069 0.0009 0.0001 0.003 7.63e−6

Table 4
The measures of a typical 4-s EEG epoch (Fig. 1) contaminated by eye movements and eye-blink artifacts: kurtosis values of ICs (kurt), the relative strengths of the ICs at the
two EOG channels (CV and CH), correlation coefficients between ICs and EOG references (rV and rH), mutual information between ICs and reference signals (MIV and MIH),
and kurtosis values of coarse waveforms of the ICs.

Kurt rV rH MIV MIH CV CH KurtA3 KurtA4 KurtD5

S1 18.71 0.17 0.97 0.08 0.85 17.11 97.02 19.67 18.33 21.43
S2 13.4 0.95 0.19 0.92 0.18 94.97 19.87 13.95 16.12 15.98
S3 48.44 0.26 −0.031 0.006 0.04 23.91 2.44 73.55 54.8 25.97
S4 0.35 −0.03 −0.12 0.003 0.07 3.50 13.34 −0.026 −0.20 0.16
S5 −0.42 0.04 0.05 0.011 0.00 1.86 2.44 −0.23 −0.07 0.25
S6 −0.16 0.02 −0.00 0.05 0.00 2.44 0.46 0.44 0.82 0.39
S7 0.65 −0.03 −0.00 0.01 0.00 2.53 0.08 0.33 0.18 0.32
S8 0.01 −0.09 0.02 0.00 0.00 9.36 1.35 0.32 0.91 0.18

dx.doi.org/10.1016/j.medengphy.2010.04.010
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The EOG electrodes were positioned above and below the right eye
to record the vertical EOG and on the left outer canthus of the eye to

F
7

ig. 3. A typical correction of EEG signals contaminated with ocular artifacts:
ecorded EEG (red line) and corrected EEG (blue line).

The kurtosis values of the detail and coarse waveforms of
he components were computed and ICs with maximum val-
es were marked for possible rejection. To compute the kurtosis,
e used the built-in kurt.m function of Matlab (The Mathworks,
2007b).

The final decision for rejection was made based on all mea-
ures. The automatic detection system took a rejection decision
Please cite this article in press as: Ghandeharion H, Erfanian A. A fully aut
statistics: Improved performance by wavelet analysis. Med Eng Phys (2010

or an IC when at least some of the criteria based on mutual
nformation, correlation, projection strength, and kurtosis were
atisfied.

ig. 4. (a) A portion of recorded EEG contaminated with a horizontal eye movement and a
are identified as the artifactual components by the proposed method. (c) Corrected EEG
 PRESS
neering & Physics xxx (2010) xxx–xxx

2.4. Summary of the automatic artifact suppression procedure

The automated procedure for extracting and removing ocular
components can be summarized as follows:

(1) Apply ICA to the 4-s raw EEG data, obtain mixing matrix and
independent components (ICs).

(2) Apply wavelet transform to each IC.
(3) Compute the measures for each IC and its wavelet transform.
(4) For each measure, flag the IC with maximum value (for the

measures of kurtosis, flag two ICs with highest values).
(5) Remove the ICs with at least four flags as the artifactual ICs.
(6) Project selected non-artifactual components back onto the

scalp.
(7) Repeat steps (1)–(6) for the next 4-s raw EEG data.

2.5. Subjects and EEG data recording

The EEG data was recorded from nine healthy subjects (2
females, 7 males) by using a g.tec amplifier (g.USBamp, g.tec, Guger
Technologies, Graz, Austria) and Ag/AgCl scalp electrodes from
positions F3, F4, Fz, C3, Cz, and T5 according to the 10/20 system.
omatic ocular artifact suppression from EEG data using higher order
), doi:10.1016/j.medengphy.2010.04.010

record the horizontal EOG. All recording channels shared a common
reference electrode at the left earlobe and a ground electrode at the
right earlobe. All signals were sampled at a rate of 256 Hz and were

portion of eye blink. (b) Corresponding independent components. Sources 1, 3 and
(blue line).

dx.doi.org/10.1016/j.medengphy.2010.04.010
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ig. 5. (a) A portion of recorded EEG contaminated with vertical eye movements a
ources 1, 4, and 5 are identified as the artifactual components. (c) Corrected EEG (b

ow-pass filtered (cutoff frequency 45 Hz). Electrode impedances
ere below 10 kV.

Each subject was seated in a comfortable armchair located about
.5 m in front of a computer screen. Depending on the cue visual
timuli which was appeared on the center of screen at each 3 s, the
Please cite this article in press as: Ghandeharion H, Erfanian A. A fully aut
statistics: Improved performance by wavelet analysis. Med Eng Phys (2010

ubject was instructed to blink or not and move or not move his/her
yes horizontally or vertically. Each run of experiment lasted 60 s,
hile a single session of experiment consisted of between 20 and

5 runs with a 1-min break in between runs. A total of 3200 4-s
EG epochs d by two expert reviewers yielded detection of a total

Fig. 6. (a) A typical 4-s segment of recorded artifact-free EEG. (b) Corresponding ext
ery slow horizontal eye movement. (b) Corresponding independent components.
ne).

of non-artifactual 1469 EEG epochs and artifactual 1636 epochs. A
total of 95 epochs were disregarded since it was unclear that they
represented EEG activity or artifact.

3. Results
omatic ocular artifact suppression from EEG data using higher order
), doi:10.1016/j.medengphy.2010.04.010

3.1. Wavelet enhanced ICA artifact detection

Fig. 1 shows a typical portion of the EEG signal contaminated by
EOG, corresponding independent components, and their wavelet

racted independent components. No components are identified as the artifact.

dx.doi.org/10.1016/j.medengphy.2010.04.010
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Table 5
The measures of a typical artifact-free EEG epoch: kurtosis values of ICs (kurt), the relative strengths of the ICs at the two EOG channels (CV and CH), correlation coefficients
between ICs and EOG references (rV and rH), mutual information between ICs and reference signals (MIV and MIH), and kurtosis values of coarse waveforms of the ICs.

Kurt CH CV MIH MIV rH rV KurtA3 KurtA4 KurtD5

S1 0.12 0.24 0.25 0.021 0.018 24.22 24.85 0.462 0.891 0.847
S2 −0.23 0.10 0.12 0.004 0.0042 5.91 6.40 0.045 0.521 0.066
S3 −0.04 0.026 0.15 7e−005 0.008 2.40 15.16 0.484 0.126 1.185
S4 −0.33 0.28 0.91 0.031 0.865 28.45 92.65 −0.349 0.134 −0.420
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S5 −0.05 0.14 0.17 0.011 0.00
S6 −0.38 0.06 0.09 0.002 0.00
S7 −0.21 −0.16 −0.13 0.009 0.00
S8 −0.11 −0.89 −0.13 0.789 0.00

ransforms using biorthogonal 4.4 as the mother wavelet [30]. It is
bserved that ICA clearly separated ocular artifacts into separate
omponents (i.e., components 1–3). Furthermore, the occurrence
f ocular artifacts is detected and located by the detail signals at
he levels 4 and 5. Moreover, the coarse waveforms are capable of
nhancing the ocular artifacts’ waveforms. To evaluate the ability
f EOG detection using wavelet transform, the kurtosis is used to
easure peaky activity distribution of the wavelet transform of the

ndependent components.
Table 1 summarizes the values of kurtosis of the recorded refer-

nce signals, the wavelet transform of the references, independent
omponents of the recorded EEG epoch, and the wavelet transform
f their corresponding independent components. It is observed that
he kurtosis values of the detail waveforms at the level 5 and the
oarse waveforms of the EOG are higher than those of the EOG sig-
al. The same result is obtained when the kurtosis values of the
etail waveform at the level 5 and the coarse waveforms of the
rtifactual components are compared with the kurtosis values of
he artifactual components.

A multiple comparison test, based on ANOVA [34], was used
o test whether there are any differences among the mean values
f kurtosis over 1636 4-s data epochs contaminated with differ-
nt kinds of ocular artifacts and determine which levels of wavelet
ransform significantly enhance the artifact detection. The results
f multiple comparison test show that the kurtosis values of detail
t the level 5 and coarse waveforms of the VEOG at the levels 3
nd 4 are significantly higher than the kurtosis value of the VEOG
Fig. 2(a)). Moreover, it is observed that the kurtosis values of detail
nd coarse waveforms of the artifactual component (i.e., D5ICV ,
3ICV , A4 ICV ) are significantly higher than the kurtosis value of the
rtifactual component (i.e., ICV) (Fig. 2(b)). The same results are
btained for the reference HEOG (Fig. 2(c) and (d)).

When comparing the artifactual and non-artifactual compo-
ents, it is found that the kurtosis values of detail and coarse
aveforms of the artifactual components (i.e., D5IC, A3IC, A4IC)

re significantly higher than those of non-artifactual components
p < 0.0038). Results of this analysis clearly indicate that the wavelet
ransform of independent components could significantly enhance
he detection of ocular artifactual components.
Please cite this article in press as: Ghandeharion H, Erfanian A. A fully aut
statistics: Improved performance by wavelet analysis. Med Eng Phys (2010

Table 2 summarizes the average values of kurtosis of the
ecorded reference signals over 1469 4-s artifact-free epochs and
ver 1636 epochs contaminated with ocular artifacts. It is clearly
bserved that on average the kurtosis values of the detail wave-

able 6
he rate of accuracy, sensitivity, and specificity for different number of criteria that
eed to be satisfied in order to assign a component as the artifactual component.

Number of criteria

2 3 4 5

Sensitivity 63.0% 89.6% 96.9% 99.9%
Specificity 98.9% 98.6% 98.6% 94.7%
Accuracy 72.3% 93.9% 97.8% 97.0%
7.75 9.46 −0.166 −0.464 0.508
5.82 9.38 −0.335 −0.034 1.143

16.82 12.85 −0.238 0.05 0.493
90.48 13.57 −0.288 0.461 0.316

forms at the level 5 and the coarse waveforms at the levels 3 and
4 are higher than those of the reference signals. The kurtosis val-
ues of the epochs contaminated by ocular artifacts are significantly
higher than that of non-contaminated ones. The results presented
here clearly indicate that wavelet transform can be used effectively
to detect the recorded data contaminated with ocular artifacts.

3.2. Mutual information

Table 3 summarizes the mutual information between each inde-
pendent component and the references (i.e., recorded EOG) for a
typical portion of the recorded EEG signals (Fig. 1). It is observed
that MI values between the ocular artifactual components and the
references are higher that those between the non-artifactual com-
ponents and the references. Note that the MI values between the
non-ocular artifactual component (e.g., component 3) and the ref-
erence signals are very small. The results of multiple comparison
test on MI values over 3105 4-s data epochs show that the MI
values between the ocular artifactual components and reference
signals are significantly different from those between non-ocular
components and reference signals (p < 0.0001).

3.3. Automatic artifact suppression

Table 4 reports the measures of a typical 4-s EEG epoch (Fig. 1)
contaminated by eye movement and eye-blink artifacts. For each
measurement, a component with maximum value is marked. The
components with at least four markers are identified as the arti-
fact components. It is observed that the sources 1–3 are correctly
identified as the artifact components. The result of artifact correc-
tion for this EEG epoch using extended Infomax algorithm [27] is
shown in Fig. 3.

The result of N-way ANOVA shows that the measures of ocu-
lar components are significantly different from those of non-ocular
components (p < 0.0001). The detection method proposed here is
based on the maximum values of measures. The components with
at least four measures with the maximum value are assigned as
the artifactual components. The result shows that the maximum
values of measures associated with the EEG epochs contaminated
with ocular artifacts are significantly different from those with the
non-contaminated epochs (p < 0.00038).

Fig. 4 shows a typical EEG epoch which is contaminated with a
horizontal eye movement and a portion of eye blink. The method
could identify the sources 1, 3 and 7 as the artifactual components
which are associated with the horizontal eye movement and eye
blink. Fig. 5 shows another EEG epoch contaminated with vertical
eye movements and a very slow horizontal eye movement. The pro-
cedure could identify correctly the sources 1, 4, and 5 as the artifacts
omatic ocular artifact suppression from EEG data using higher order
), doi:10.1016/j.medengphy.2010.04.010

associated with the vertical and horizontal eye movements. Fig. 6
shows a typical portion of recorded EEG signals with no artifact
and corresponding independent components. Table 5 summarizes
the measured values of this portion of EEG. It is observed that no
components can be identified as the artifactual component.

dx.doi.org/10.1016/j.medengphy.2010.04.010
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Table 7
Results of the artifact detection using proposed method. The rows denote the actual
category of the EEG epoch (as annotated by the experts), while the columns denote
the classifications of the proposed method.

Classified as artifactual
epoch

Classified as
non-artifactual epoch
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Artifactual epoch 1584 49
Non-artifactual epoch 20 1452

The proposed algorithm was evaluated based on reviewer’s
arkings. The results on 3105 4-s EEG epochs indicate that the

ccuracy of detection is 97.8% when the decision is based on 4
easures with maximum values (Table 6). The rate of correctly

dentified artifactual components (i.e., sensitivity) is 96.9% while
he rate of correctly identified non-artifactual components is 98.6%
i.e., specificity). The confusion matrix based on 4 measures is given
n Table 7. It is observed that 20 artifact-free 4-s EEG epochs are
dentified incorrectly as the artifactual epoch and 49 artifactual
pochs are identified as the non-artifactual. It is significant to note
hat the kurtosis values of the sources as well as the kurtosis val-
es of coarse and detail waveforms of the sources at the levels 3–5
re considered as the measures for detection of artifactual sources.
owever, when the correlation criterion and the kurtosis values of

he sources are not considered as the measures, the detection rate
ill be decreased from 97.8% to 95.2%.

. Discussion and conclusions

In this paper, we have presented a fully automatic method
or ocular artifact suppression employing wavelet transform
nd independent component analysis. In the current study, we
sed wavelet analysis to enhance the detection of artifactual
omponents in an ICA-based procedure while Castellanos and
akarov [31] used the wavelet to enhance the artifact suppres-

ion. The results of current study clearly indicate that wavelet
ransform could significantly enhance the detection of artifactual
omponents in an ICA-based procedure for ocular artifact suppres-
ion.

The results show that the method could identify ocular artifact
omponents with an accuracy of 97.8%, a sensitivity of 96.9%, and
specificity of 98.6%. To the best of our knowledge, this result has
ot been reported before. LeVan et al. [21] who used a Bayesian
lassifier for identification of artifactual components in an ICA-
ased scheme reported that the identification of EEG components
as performed with a sensitivity of 87.6% and a specificity of

0.2%.
One striking feature of the proposed method is the fully auto-

atic identification of artifactual components without requiring
alibration, predefining fixed threshold level, and pretraining. In
ontrast, the methods proposed by Barbati et al. [18], Joyce et al.
19], Castellanos and Makarov [31], and Romero et al. [16] are all
ased on thresholding scheme.

The proposed method was evaluated using only six EEG and
wo EOG channels. However, the method can also be applicable for

ore EEG channels. The effect of the number of EEG channels on
he ocular artifact reduction has been already evaluated by Romero
t al. [16]. Their results showed that errors in spectral parameters
ecame higher using a configuration with few EEG electrodes. Error
alue obtained using BSS-based method with 19 EEG and 2 EOG
hannels is slightly (about 2.5%) lower than that with only 6 EEG
Please cite this article in press as: Ghandeharion H, Erfanian A. A fully aut
statistics: Improved performance by wavelet analysis. Med Eng Phys (2010

nd 2 EOG channels.
The method presented in this study needs to record EOG sig-

als as the reference channels. However, it should be noted that
lthough it is not needed to record EOG for applying BSS proce-
ures, the error value not using EOG recordings is higher than those

[

[
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obtained when EOG channels are included in the source decompo-
sition [16].
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